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Abstract 

 

In order to increase the communication quality in frequency selective fading channel 

environment, orthogonal frequency division multiplexing (OFDM) systems are used to 

combat inter-symbol-interference (ISI). In this thesis, a channel estimation scheme for 

the OFDM system in the presence of sparse multipath channel is studied. The channel 

estimation is done by using the artificial neural networks (ANNs) with Resilient 

Backpropagation training algorithm. This technique uses the learning capability of 

artificial neural networks. By means of this feature we show how to obtain a channel 

estimate and how it allows the proposed technique to be less computationally complex; 

as there is no need for any matrix inversions. This proposed method is compared with 

the Matching Pursuit (MP) algorithm that is well known estimation technique for sparse 

channels. The results show that the ANN based channel estimate is computationally 

simpler and a small number of pilots are required to get a better estimate of the channel 

especially in low SNR levels. With this setting, the proposed algorithm leads to a better 

system throughput. 

Keywords – Orthogonal Frequency Division Multiplexing (OFDM), Sparse Channel 

Estimation, Matching Pursuit Algorithm, Artificial Neural Network (ANN).  
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OFDM SİSTEMLER İÇİN YAPAY SİNİR AĞI TABANLI SEYREK KANAL 

KESTİRİMİ 

 

Özet 

 

Frekans seçici sönümlemeli kanal ortamında, haberleşme kalitesini arttırmak için dik 

frekans bölmeli çoğullama (OFDM) sistemleri semboller arası girişimle baş edebilmek için 

kullanılmaktadır.  Bu  tezde, seyrek çok-yollu kanalın bulunması durumunda, OFDM 

sistemlerinde kanal kestirimi  çalışılmıştır. Kanal kestirimi, Esnek Geri Yayılım eğitim 

algoritması kullanan yapay sinir ağları (YSA) ile gerçekleştirilmiştir. Bu teknik yapay sinir 

ağlarının öğrenme yetisini kullanmaktadır. Bu özellik sayesinde, kanal kestiriminin nasıl 

yapıldığı ve önerilen yöntemin herhangi bir matris tersine ihtiyaç duymadan daha az 

hesaplama karmaşıklığına nasıl sahip olabildiği gösterilmektedir. Önerilen bu yöntem, en 

uyguna yakın Eşleştirme Arama (MP) algoritması ile karşılaştırılmıştır.  Sonuçlar, özellikle 

düşük SNR seviyelerinde daha iyi kanal kestirimi elde edebilmek için, YSA tabanlı kanal 

kestiriminin hesaplama kolaylığı sağladığını ve daha az sayıda pilot veriye ihtiyaç 

duyulduğunu göstermiştir. Böylece, önerilen yöntemin daha iyi bir sistem çıkışına olanak 

sağladığı gösterilmiştir.  

Anahtar Kelimeler – Dik Frekans Bölmeli Çoğullama (OFDM), Seyrek Kanal Kestirimi, 

Eşleştirme Arama Algoritması, Yapay Sinir Ağları.  
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1. Introduction 
 

In a general setup of wireless communication systems, a signal is transmitted which 

passes through a wireless medium and is received at the receiver. The wireless medium 

– generally called wireless channel – is modeled as a pseudo-differential operator. In 

data modulation sense, the basic communication systems modulate the data onto a 

single carrier frequency due to which the available bandwidth is completely occupied by 

the transmitted symbol. However, in modern communication systems, the available 

spectrum is divided into equal sub channels. This is the base of orthogonal frequency 

division multiplexing (OFDM), in which the sub channels are mutually orthogonal that 

helps in mitigating the inter-symbol interference (ISI) and hence, providing large data 

rates and radio channel impairments. The attraction of OFDM is due to the fact that it 

handles multipath effect at the receiver which causes ISI and frequency selective fading. 

In this communication setup, the wireless channel estimation refers to carefully 

calculating the operator and equalization refers to commuting the transmitted signal. In 

this thesis, we study the problem of channel estimation for OFDM in time-invariant 

sparse mobile communication channels. We use already established mathematical 

models to describe the signal and wireless communication channel. Our study largely 

focuses on the channel estimation part of the system; to devise an architecture that uses 

a more efficient and computationally les complex algorithm i.e. the artificial neural 

networks (ANNs) as channel estimators. Making use of the learning power of ANNs, a 

technique has been developed for channel estimation and the performance of this 

technique is studied. The performance – in terms of efficiency/correctness and 

computational complexity – of this suggested architecture is compared with the existing 

sub-optimal Matching Pursuit (MP) algorithm for the channel estimation under sparse 

setting.  
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Furthermore, not much work has been previously done on the implementation of the 

ANN as a channel estimator when the channel’s impulse response in the communication 

system is sparse. Another purpose that this study serves is the insight it provides to the 

channel estimation algorithms from the computational perspective.  The Computational 

complexity theory is a separate field of study itself that is partly based on the theoretical 

computer science and mathematics; hence, studies have been done on the complexities 

of ANNs and MP algorithms. Making use of the proven theoretical models, we compare 

the time-complexities of both algorithms. Using the results from intense simulations in 

Matlab® environment, we show that given the right architectural parameters, ANN is 

superior than MP algorithm not just in terms of symbol error rate (SER) performance 

(information throughput) but is thought to be better in computational performance. 

1.1. Literature Review 
The wireless channels that occur just because of the multipath propagation of the 

transmitted signal and are static within one OFDM symbol are modeled with a 

convolutional operator i.e. the pseudo-differential operator reduces to a Fourier 

multiplier e.g. finite impulse response (FIR) filters. Such operators are perfectly diagonal 

in frequency domain and are known as frequency selective channels. Channel estimation 

of OFDM systems [1] in frequency selective channels with the help of pilot symbols are 

quite common [2] and is used in many applications. [3] discusses another approach of 

channel estimation by banded approximation of the channel matrix for OFDM systems. 

[4] and [5] discusses some optimal techniques for channel estimation and equalization 

and efficiency of the estimation algorithms. Some communication problems for OFDM 

contain channels with large delay spread and a smaller non-zero support [6]. These 

channels are known as sparse channels and are faced in a number of practical 

applications like high definition television (HDTV) where there are few echoes but the 

channel response spans hundreds of data symbols [7]. Some of the delay profiles like 

underwater acoustics or hilly terrain (HT) delay profile in broad-band wireless 

communication systems, comprise of a sparsely distributed multipath [8]. Different 

channel estimation techniques have been in use for such systems and proven to have 
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different performance under different settings; the properties of the Least Square’s 

estimators are investigates in [9]. An assemblage of sparse channel estimation 

algorithms has lately appeared and is known as compressed sensing [10]. Compressive 

sampling MP (CoSaMP) is used as sparse channel estimator in [11] based on the CoSaMP 

algorithm studied in [12]. The estimation of the channel taps one by one is done by using 

Matching Pursuit (MP) algorithm in [6] that is based on the work originally brought in 

light in [13].  

However, all the mentioned multipath sparse channel estimation algorithms either 

suffer from an error floor or have high computational overhead. Artificial neural 

networks are computationally cheap and efficient algorithms that have caught much 

attention these days for channel estimation problems. In [14], authors have discussed 

an artificial neural network (ANN) based channel estimator that estimates the multipath 

channel in the frequency domain. The study uses multilayer perceptron NN (MLP-NN) 

with Levenberg-Marquardt as the learning algorithm.[15] evaluates the performance of 

pilot based OFDM system for multipath channel by using Generalized regression neural 

networks (GRNN) and adaptive network based fuzzy interference systems (ANFIS). A 

number of other studies use the same basic OFDM models and estimate the multipath 

channel either in frequency or time domain using ANN; with a slight change in the ANN 

architecture. [16] proposes a channel estimation using ANN for the LTE uplink system. 

Received pilot symbols are used in this study to first train the network and then estimate 

the whole channel. [17] – [19] also discuss the use of ANN as an estimator for OFDM 

systems under different assumptions. [20] – [21] are some further studies that make use 

of the recurrent neural networks (RNN) as channel estimator for different scenarios like 

multiple input multiple output OFDM (MIMO-OFDM) systems, STBC systems, OFDM 

interleave division multiple access (OFDM-IDMA) etc. A recent study [22] involves ANN 

based sparse channel estimation for MIMO-OFDM systems.  [23] [24] [25] [26] 

Computational complexity of the estimation algorithm is one of the major factors that 

define the quality of the estimator. Complexity theory being a separate field of study, 
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much effort has been made on the complexity analysis and comparison of diverse 

algorithms. A comparative complexity study on the several invariants of MP algorithm is 

done in [27] and [28]. The complexity of ANN, however, is still an open research question 

and a lot of effort has been made towards the satisfactory solution to this problem. The 

author in [29] argues that for neural networks, measuring the computing performance 

entails to new gears from information theory and computational complexity. The 

complexity of learning with regards to the Multi-Layer Perceptron ANN (MLP-ANN) is 

comprehensively discussed in [30] in which author ponders upon the expected 

computational complexity of the learning problem. 

1.2. Research Methodology 
The motivation behind this work was driven by the fact that with the advent of 

technology, the need to find better and easier ways to go from point A to point B has 

increased. This shows researchers a way of combining the classical algorithms with the 

advanced ones to find better and faster solutions. Under the umbrella of Digital Signal 

Processing in modern day’s wireless communications with high demand of bandwidth 

efficient algorithms, the channel estimation with better accuracy and efficiency becomes 

hard and computationally complex. This increase in complexity makes the machines’ 

ability to learn, an important factor that cannot be neglected. Various machine learning 

algorithms namely Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) 

etc. have been previously used in some earlier studies for the purposes of channel 

estimation in different wireless communication settings. With this motivation, we 

formulate the research question of our thesis that which machine learning architectures 

can be used for channel estimation under sparse setting, and how? Further, to devise an 

architecture to find the algorithm that is more efficient and less computationally 

complex than the current sub-optimal algorithms.  

This work answers the above questions and formulates a comprehensive solution to the 

given sparse problem. The author aims to extend this work to the case of Time-Varying 

Sparse Channels in which we observe a movement between the transmitter and 
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receiver; which in result introduces a phenomenon known as the Doppler’s effect. The 

channel estimation problem in this case becomes difficult, hence, more complex 

mathematical models and powerful channel estimation schemes are required in order 

to solve the said problem. Furthermore, the author believes that this work paves the 

way for the future work that can produce a better performing communication systems 

with lesser complexity. The use of ANNs impose some questions as the ANN optimization 

is still an open problem, so, with the advancements in the field of ANNs an optimized 

solution to such problems with lesser computational complexity and better 

communication system throughput can be obtained. 

Firstly, this research aims to develop the system model in chapter 2, that includes the 

OFDM and channel properties and model derivations given in the successive sections. 

Thereafter, a matrix form of the channel model is also obtained towards the end of the 

chapter. Secondly, the fundamentals of channel estimation are discussed in chapter 3 

that covers the classical estimation algorithms; the sub-optimal Matching Pursuit (MP) 

algorithm based sparse channel estimator that forms the benchmark for our study is 

discussed in the final subsections of the chapter. It continues into the chapter 4 with the 

introduction, working and architectural models for Artificial Neural Networks; where the 

ANN model for the proposed estimator’s architecture is discussed towards the end of 

the chapter. Finally, the results of this research obtained from simulations are presented 

and compared in Chapter 5 and conclusions are made in the final chapter 6. 
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2. System Model 
 

2.1. Orthogonal Frequency Division Multiplexing (OFDM) 
Before the advent of OFDM, FDM was used in order to transmit more than one signal 

through the telephone lines. As the name suggests, FDM divides the whole channel 

bandwidth into smaller sub-channels and multiple low rate signals are transmitted over 

the different sub-channels having different frequencies, fig. 1(a). However, this method 

is inefficient due to the fact that the sub-channels interfere with one another and have 

inadequacies even after being separated by a guard interval. 

The urge to solve the bandwidth efficiency problem, gave birth to OFDM in which 

multiple, orthogonal, narrow-band sub-channels are transmitted in parallel hence, being 

more bandwidth efficient as pictured in fig. 1(b). Due to the demands of high data rates 

in wireless multimedia applications, OFDM has become more popular in recent times 

and becomes the modem of choice in modern wireless communication systems [31]. 

 

Figure 1: (a) Multiple Carriers in FDM, (b) Multiple Orthogonal Carriers in OFDM  
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Other than combatting with the multi-path fading and Inter-Symbol Interference (ISI), 

OFDM is also robust in high speed wireless communications. It is considered to be a 

remarkable method that is capable of decreasing the frequency-selective fading into flat 

fading by dividing the available bands into several subcarriers [32].  For this reason, 

OFDM symbol is quite longer than any other single-carrier system symbol, that makes it 

more robust against the delay dispersion of the channel and the fading caused by it [33]. 

2.1.1. OFDM Basics 

An OFDM signal is generated on the transmitter side digitally because of the difficulty in 

designing the signal and receiver in the analog domain [34]. Fig.2 shows a typical OFDM 

system model in an AWGN channel [35].  

 

Figure 2: The basic block diagram of an OFDM system in AWGN channel 

The incoming data stream is first modulated using any specific modulating schemes i.e. 

QPSK, QAM etc. and the symbol from these schemes are then serial to parallel 

converted. This parallel data is then fed to an N-point Inverse Discrete Fourier Transform 

(IDFT) and converted to the time domain sequence. IFFT is more cost efficient than IDFT, 

hence, is widely used as well. 
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The efficiency of OFDM lies in the fact that all the sub-carriers are closely spaced that is 

allowed because there exists orthogonality between them. This orthogonality can be 

checked by multiplying and then integrating any two subcarriers. Following section 

explain the signal model which hold the orthogonality principle for any given subcarriers. 

The carriers are linearly dependent if the carrier spacing is 1/𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, where 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is the 

OFDM symbol duration; this can be held when the OFDM signal is defined by the FFT 

procedures. The OFDM symbol duration is defined as 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑁𝑁 × 𝑇𝑇𝑠𝑠, where 𝑁𝑁 is the 

total number of subcarriers and 𝑇𝑇𝑠𝑠 is the sampling duration. 

After the IFFT block, a cyclic prefix (𝐶𝐶𝐶𝐶) is added to the signal that helps to mitigate the 

ISI. 𝐶𝐶𝐶𝐶 is the copy of a fraction, typically 25%, of the last part of the individual OFDM 

symbol that is added to the start in order to allow the receiver to capture the starting 

point of the symbol with the probability of the length of 𝐶𝐶𝐶𝐶 [32].  

2.1.2. Signal Model 

We reflect an OFDM system with 𝑁𝑁 total subcarriers, the transmitted OFDM signal in 

discrete-time is then given as: 

𝑠𝑠[𝑛𝑛] = 1
𝑁𝑁
� 𝑑𝑑[𝑘𝑘]

𝑁𝑁
2−1

𝑘𝑘=−𝑁𝑁2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗2𝜋𝜋𝜋𝜋 𝑛𝑛

𝑁𝑁
)    (1) 

Where, N is the total number of sub-carriers, 𝑑𝑑[𝑘𝑘] is the frequency domain data symbol 

transmitted at discrete time 𝑛𝑛 and subcarrier 𝑘𝑘. By the Central Limit Theorem, 𝑠𝑠[𝑛𝑛] can 

be modeled as zero-mean complex Gaussian sequence, given that 𝑁𝑁 is sufficiently large 

[36]. A set of known data symbols with known locations – branded as pilot symbols – are 

also imbedded in the transmitted signal. These uniformly-spaced pilot symbols are used 

on the receiver side in channel estimation step and, hence, estimation is called Pilot-

Aided channel estimation. Throughout this study, the symbol Υ will be used to represent 

the pilot spacing, hence, greater the value of Υ, smaller will be the total number of pilot 

symbols. The total number of pilot symbols are denoted by 𝑁𝑁𝑝𝑝. 
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After the CP insertion of length 𝐿𝐿𝑐𝑐, the multiple OFDM symbols are now ready to be 

transmitted over consequent sub-carriers. These are then parallel to serial converted 

and transmitted over the Time-Invariant sparse multipath channel. 

2.2. Wireless Channel 

Ideally, the wireless channel should leave the transmitted signal unchanged so that the 

received signal equals the transmitted signal, i.e.𝑦𝑦(𝑡𝑡) = 𝑠𝑠(𝑡𝑡′), where 𝑡𝑡′ = 𝑡𝑡 − 𝜏𝜏0 defines 

the time shift equivalent to the time 𝜏𝜏0 it takes for the signal to reach the receiver from 

the transmitter. The ideal channel never happens in the practice obviously, hence, this 

subsection gives a brief review of some important properties of the wireless channel and 

its effect on the signal once it propagates through the channel. It also discusses the 

mathematical channel model used for this study. 

 

Figure 3: Wireless Multipath Channel 
2.2.1. Multipath Fading 

The transmitted signal is affected by a number of factors while it propagates through the 

wireless medium. Firstly, electromagnetic waves deteriorate as it passes through the 

radio channel and the power of the received signal is decreased with the increased 

distance between the transmitter and receiver; known as path loss. Additionally, as the 

signals’ direct line of sight (LOS) path might be blocked by some physical objects, it might 

take other paths to the receiver; fig. 3 [37]. This multipath propagation occurs where the 

single transmitted signal arrives at the receiver through multiple different paths with 

different delays and attenuation factors because of the reflection, diffraction, scattering 
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etc. instigated by the physical objects (collectively assumed as Scatterers). This makes 

the received signal’s power fluctuate over time/frequency and is called fading. This 

multipath fading comes under the umbrella of small-scale fading and can be defined by 

the Rayleigh statistical model. 

The communication problems concerning the estimation and equalization of the 

communication channels, that have a larger delay spread and small non-zero support, 

are being studied. These channels are known to have sparse channel impulse response. 

Sparse multipath channels (SMPC) can be seen in many real-world applications and the 

immobile channel impulse response in continuous time is written as: 

𝑐𝑐(𝑡𝑡) = ∑ 𝛼𝛼𝑙𝑙𝐿𝐿−1
𝑙𝑙=0 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝑙𝑙)     (2) 

for 𝑙𝑙 =  0, … , 𝐿𝐿 − 1. where, 

 L is the total number of multi-paths 

 𝛼𝛼𝑙𝑙  is the attenuation factor for each path 

 𝜏𝜏𝑙𝑙 is the delay for the path 𝑙𝑙 

The 𝛼𝛼𝑙𝑙  are a subset of complex natural distribution with zero-mean and variance of 𝜎𝜎𝑙𝑙2 

i.e. ~ 𝒞𝒞𝒞𝒞(𝟎𝟎,𝜎𝜎𝑙𝑙2 ) with normalized unit power. 

As a sparse problem, it is not possible to directly show the discrete-time equivalent of 

(2), hence a discrete-time sparse representation is developed in the next section. 

2.2.2. Sparsity in Wireless Channels 

Given the fact that the transmitter, receiver and all the scatterers are static, the system 

can be modeled as linear time-invariant (LTI) system. Considering this, some 

communication environments involve channels with large delay spread and a small non-

zero support; such problems occur quite often in practical implementations. The channel 

response of such channels spans many hundreds of data symbols in HDTV where there 

are a very few numbers of echoes due to multipath.  The theory of LTI-SMPC suggests 

that 𝐿𝐿 << 𝑁𝑁𝐶𝐶𝐶𝐶, where 𝑁𝑁𝐶𝐶𝐶𝐶 is the length of the cyclic prefix (CP). An illustration of sparse 
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multipath channel i.e. 𝑐𝑐[𝑛𝑛] ≠ 0 for really limited values of 𝑛𝑛, is given in Fig. 4. The 

channel length in the figure is 40, however, the non-zero or dominant taps amount to 

15. 

 
Figure 4: Sparse Multipath Channel 

Recently, Compressive Sensing (CS) technique has gained popularity because of its 

efficiency in signal acquisition frameworks where the signal considered as sparse or 

compressible in frequency or time-domain; meaning that for continuous signals, the 

information rate is much smaller than as depicted by the signal’s bandwidth. Also, a 

discrete-time signal relies on a certain degree of freedom that is fairly smaller than the 

signal’s finite span [38].  As a result, length of the training sequence can be shortened as 

compared to linear estimation techniques. CS explores the sparsity of the signals and it 

has shown to be possible because an exact depiction of such signals is possible in terms 

of a suitable basis. 

Working on the discrete-time sparse signals is common as it is simpler than its 

continuous-time counterpart and also that it is more developed. Taking the Fourier 

transform (FFT) of CIR given in (2), we get: 
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𝐻𝐻(𝑓𝑓) =  ∫ 𝑐𝑐(𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋.𝑑𝑑𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
0      (3) 

Replacing (2) in (3) and simplifying the equation gives: 

𝐻𝐻(𝑓𝑓) =  ∑ 𝛼𝛼𝑙𝑙𝐿𝐿−1
𝑙𝑙=0 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜏𝜏𝑙𝑙      (4) 

where, 𝑓𝑓 = (−𝑁𝑁
2

+ 𝑘𝑘)∆𝑓𝑓 for 𝑘𝑘 = 0,1, … , (𝑁𝑁 − 1) and ∆𝑓𝑓 = 1
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

; ∆𝑓𝑓 being the carrier 

spacing and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is the symbol duration. Also, the continuous-time path delays 𝜏𝜏𝑙𝑙 can 

be represented in discrete-time, with a resolution factor 𝜌𝜌, as 𝜏𝜏𝑙𝑙 = 𝜂𝜂𝑙𝑙′(𝜌𝜌𝑇𝑇𝑠𝑠
′); here, 𝜂𝜂𝑙𝑙′ ×

𝜌𝜌 = 𝜂𝜂𝑙𝑙  . Similarly, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁(𝜌𝜌𝑇𝑇𝑠𝑠′) and 𝑇𝑇𝑠𝑠 = 𝜌𝜌𝑇𝑇𝑠𝑠′. Then (4) can be written in simplified 

form as: 

𝐻𝐻(𝑘𝑘) =  ∑ 𝛼𝛼𝑙𝑙𝐿𝐿−1
𝑙𝑙=0 𝑒𝑒−𝑗𝑗2𝜋𝜋(−𝑁𝑁2+𝑘𝑘)(

𝜂𝜂𝑙𝑙
𝜌𝜌𝑁𝑁)     (5) 

Eq. (5) represents the channel frequency response for the sparse channel impulse 

response given in (2). Now, in order to get the equivalent representation of discrete 

channel impulse response ℎ𝑒𝑒𝑒𝑒[𝑛𝑛], we take inverse Fourier Transform (IFFT) of (5) as: 

ℎ𝑒𝑒𝑒𝑒[𝑛𝑛] =  � 𝐻𝐻[𝑘𝑘]
𝐾𝐾
2−1

𝑘𝑘=− 𝑘𝑘2
𝑒𝑒
𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
𝜌𝜌𝑁𝑁      (6) 

After replacement and rearrangement of (6), we get the discrete time equivalent 

channel impulse response representation of the multipath channel. We can write it in 

matrix form as 𝒉𝒉𝒆𝒆𝒆𝒆 = 𝑭𝑭𝜼𝜼
† 𝑯𝑯, where, 𝑯𝑯 is given in (5) and 𝑭𝑭𝜼𝜼

† ∈  ℂ𝜌𝜌𝑁𝑁𝐶𝐶𝐶𝐶×𝑁𝑁 is inverse of 𝐹𝐹𝜂𝜂 =

1
𝜌𝜌𝜌𝜌
𝑒𝑒−

𝑗𝑗2𝜋𝜋
𝜌𝜌𝜌𝜌𝑘𝑘(𝑛𝑛−𝜂𝜂𝑙𝑙) and 𝑁𝑁𝐶𝐶𝐶𝐶 is the length of CP. The equivalent representation of channel’s 

frequency response is then given as: 𝑯𝑯𝑒𝑒𝑒𝑒 = 𝑭𝑭𝜼𝜼 𝒉𝒉𝒆𝒆𝒆𝒆  ∈  ℂ𝑁𝑁×1. 𝒉𝒉𝒆𝒆𝒆𝒆 will be used during the 

training part of neural networks as the target set. It is explained in detail in Chapter 4. 

The multipath sparse channel with 15 multipath was shown in fig. 4; its equivalent 

discrete time-domain representation 𝒉𝒉𝑒𝑒𝑒𝑒 with resolution 𝜌𝜌 = 16 is presented in fig. 5. 
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Figure 5: Time-Domain representation of the Sparse-multipath channel and its equivalent 

channel (𝜌𝜌 = 16) 

The total number of multipath used for this study is 3 and fig. 6 presents the sparse 

multipath channel and its equivalent discrete time representation. The ripples that can 

be observed in the plots are due to the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 functions that arise because of the band-

limited property of the channel. Also, as we can see that most of the values are either 

zero or near zero, such points are not required to be estimated and are mostly ignored 

at the channel estimation step by using a threshold factor. This is the reason why we 

require lesser pilots symbols for estimation and in return the throughput is increased.  
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Figure 6: Time-Domain representation of the Sparse-multipath channel and its DT equivalent 

channel (ρ=8) 

Thus, the frequency domain representation 𝑯𝑯 and 𝑯𝑯𝑒𝑒𝑒𝑒 of 𝒉𝒉 and 𝒉𝒉𝑒𝑒𝑒𝑒, respectively, is 

presented in the following Fig. 7. 

 
Figure 7: Frequency-domain representation of sparse channel and its equivalent channel 
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We’ll see in the channel estimation sections that the resolution plays an important role 

in the efficiency of the estimation algorithm. Algorithms like MP that exploit the sparsity 

of the signal show difference in the performance on the basis of different values of 𝜌𝜌. 

The effect of 𝜌𝜌 can be observed by comparing figures 5 and 6. 

2.3. Unaccountable Additive Noise 
Other than the fading effects on the propagating signals, there are some other minor 

electromagnetic effects that are unaccountable for in the channel. The combination of 

these effects are catered for by adding a noise into the signal when it passes through the 

channel. The noise process is usually additive and is categorized by its intensity and 

distribution. The noise process is measured in Signal to Noise Ratio (SNR) which is a ratio, 

hence, have no units and is represented in term of decibels dB. In the frequency 

modulation techniques, SNR is usually measured as the ratio of the Energy per Bit to the 

Noise Spectral Density (Eb/N0). Being a process of noise, additive noise has zero as its 

first moment and the color of the noise is shown by its second moment. From the several 

statistical models, commonly used noise process is the Additive White Gaussian Noise 

(AWGN); with Gaussian being its distribution and White means that the white light is 

also a noise process, hence, affects the signal. In this thesis, we will use AWGN as the 

noise process with zero-mean and variance of N0 and will be represented in the following 

sections with w[-] in time domain and with W[-] in frequency domain. 

2.4. Observation Equation 

At the receiver, after removing the 𝐶𝐶𝐶𝐶 i.e. discarding the samples falling in the 𝐶𝐶𝐶𝐶 and 

symbol rate sampling, the received signal at the input of the Fast Fourier Transform (FFT) 

can be expressed as: 

𝑦𝑦[𝑛𝑛] = � 𝑠𝑠[𝑛𝑛 − 𝑙𝑙]𝑐𝑐[𝑙𝑙] + 𝑤𝑤[𝑛𝑛]𝐿𝐿−1
𝑙𝑙=0     (5) 

Where, n=0, 1…, N-1. 𝑤𝑤[−] is the zero mean complex additive white Gaussian noise with 

variance 𝑁𝑁0. 
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The above input-output relationship is further evaluated and converted to a matrix form 

in order to apply a suitable channel estimation algorithm. 

The input-output model of the signal can now be represented in a matrix form.  The 

matrix form of the model makes it easier to represent the input-output relationship and 

use it for the further evaluation of the relationship in the channel estimation steps. As 

our problem belongs to the wider sparse representation problem, hence, according to 

the channel representation discussed in section 2.2, we can represent our observation 

model given in (5). Eq. (5) can be written in matrix form as: 

�
𝑦𝑦(0)
⋮

𝑦𝑦(𝑁𝑁 − 1)
� =  �

𝑠𝑠(0) ⋯ 𝑠𝑠(−𝑀𝑀 + 1)
⋮ ⋱ ⋮

𝑠𝑠(𝑁𝑁 − 1) ⋯ 𝑠𝑠(𝑁𝑁 −𝑀𝑀)
� �

𝑐𝑐(0)
⋮

𝑐𝑐(𝑀𝑀− 1)
� +  �

𝑤𝑤(0)
⋮

𝑤𝑤(𝑁𝑁 − 1)
�  (6) 

Which can be condensed to: 

𝒚𝒚 = 𝑨𝑨𝑨𝑨 + 𝒘𝒘      (7) 

From eq. (7), it is known that the channel is sparse and the problem is to approximately 

calculate the received vector 𝒚𝒚 in terms of a linear combination of a small number of 

columns from the matrix 𝑨𝑨. In other words, we must find 𝒄𝒄 in (6) such that 𝒚𝒚 ≈ 𝑨𝑨𝑨𝑨 [6]. 

The matrix 𝑨𝑨 is called the dictionary matrix or in CS theory as the sensing matrix that 

satisfies some characteristic conditions.  
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3. Channel Estimation 

 

3.1. Introduction 

The problem of obtaining the transmitted symbols from the received demodulated 

symbols is known as equalization as explained in the previous sections. One of the widely 

used approach is to estimate the effect of the channel and revert them. This poses a 

challenging sub-problem of the channel estimation. The purpose of the channel 

estimation is to approximately compute the effect of the channel on the transmitted 

signal, other than the unaccountable environmental noise. The estimation of this effect 

on the transmitted signal is calculated in terms of the coefficients of the channel matrix 

as explained in the above sections or in terms of the related system functions. An 

accurate channel estimation is required at the receiver in order to properly equalize the 

received signal so that the transmitted data can be extracted. 

The associations between these system functions that defines a sparse multipath 

channel [39] suggests that the estimation of any of these parameters are enough for 

finding the transmitted data at the receiver. The entries of a channel matrix don’t say 

much about the identity of the channel due to the limited bandwidth [40], hence, a 

model is defined that outlines the wireless channel and the estimation of model’s 

parameters is carried out at the receiver to equalize the channels effect. The use of pilot 

symbols – as discussed in the previous sections – for channel estimation purposes is 

known to be the pilot-aided channel estimation. Many classical algorithms are used 

under the above mentioned settings. 

3.2. Classical Algorithms 

There are a number of channel estimation techniques used in wireless communication 

systems. Most of these techniques make use of the pilot symbols that are transmitted 

with the transmitted data. With these pilot symbols, some of the channel coefficients 
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are calculated and then the rest are estimated using classical estimation algorithms like 

LS or MMSE. A number of different pilot arrangements are used that have shown to have 

different efficiencies for different systems. 

3.2.1. Linear Minimum Mean Square Error Estimator (LMMSE) 
LMMSE is a special case of the Bayesian estimator MMSE that works on the principle of 

minimizing the Mean Square Error (MSE) of the estimated values of the dependent 

variable. MSE is usually the measurement of an estimator’s quality in most of the 

estimators that operate by minimizing the MSE. MMSE is the type of estimator that uses 

the quadratic cost function, therefore, the posterior mean of the estimated parameter 

is required by MMSE that is burdensome to calculate. This makes LMMSE a better choice 

as they are very flexible and are the core of many popular estimators like Kalman Filters. 

[41] 

Furthermore, channel estimation can be done in frequency domain or in time domain. 

At the receiver, after matched filtering and removing 𝐶𝐶𝐶𝐶 [36], either the channel 

estimation can be performed on that time-domain signal or the signal can be passed 

through the FFT block and then the estimation is performed on the frequency domain 

signal at the output of the FFT block.  But, the use of LMMSE for the bigger sample space 

gets prohibited and hence cannot be used as a channel estimator. Yet, it can be used as 

a secondary algorithm that assists the major, less complex channel estimator e.g. to 

estimate the values of the received pilot symbols. The use of LMMSE is the same as 

mentioned and is explained in the subsequent sections. 

3.3. Matching Pursuit (MP) Algorithm: 

As the fact has been established in the previous sections that the problem under 

discussion can be viewed as the sparse representation problem so the MP algorithm has 

proven to be a suboptimal solution to this problem [6]. 

3.3.1. MP as Channel Estimator: 
MP is a greedy algorithm that works by selecting the waveform from dictionary matrix 

𝑨𝑨 = [𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑀𝑀], at each iteration, that best matches the approximate part 𝑏𝑏0 = 𝑏𝑏 of 
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the signal and is denoted as 𝑎𝑎𝑙𝑙1. The residual 𝑏𝑏1 is obtained by negating the projection 

of 𝑏𝑏0 in this direction from 𝑏𝑏0. Again, the best aligned column 𝑎𝑎𝑙𝑙2 of 𝑨𝑨 with 𝑏𝑏1 is found 

and so is its residual. The algorithm continues sequentially in the same manner until a 

stopping criteria is met. The stopping criteria used for this study is the when the residual 

gets really small i.e. �𝑏𝑏𝑝𝑝� <  𝜖𝜖 for some constant 𝜖𝜖 and iteration 𝑝𝑝. MP algorithm in its 

most elementary arrangement [42] is applied to our problem of sparse channel 

estimation using the observation model given in (7). 

 

Figure 8: Performance comparison for MP estimate, original and equalized channel (𝜌𝜌 = 𝛶𝛶 = 8)  
Figure 8 gives a comparison between the SER performance against multiple SNR values 

for MP estimate, original channel and its equivalent representation. It can be seen that 

MP performs quite well as a sparse channel estimator. 

Effect of 𝜌𝜌 
Keeping the same pilot spacing Υ and changing the resolution 𝜌𝜌, we observe that the 

signal is expanded in the time-domain and the number of columns of matrix 𝑨𝑨 are 

increased, for MP algorithm. This increase in the number of atoms, increases the 
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complexity of the algorithm. Figure 9 shows the symbol error rate (SER) comparison for 

the different values of SNR with 𝜌𝜌 = 20 and Υ = 8. 

 

Figure 9: Performance comparison for MP estimate, original and equalized channel (𝜌𝜌 =
20,𝛶𝛶 = 8) 

Effect of  𝛶𝛶 
Now if we keep the resolution constant and compare the efficiency of MP for different 

values of pilot spacing Υ, we will observe that with the increase in the spacing between 

pilots i.e. less number of pilots being used, the efficiency of MP is decreased. Efficiency 

increases with the increased number of pilots in the system and that is quite obvious for 

MP being used as an estimation algorithm. If the algorithm is already performing sub-

optimally, then increase in the pilot symbols will not make much difference. Fig. 10 

confirms it when compared with fig. 9. 
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Figure 10: Performance comparison for MP estimate, original and equalized channel (𝜌𝜌 =
20,𝛶𝛶 = 4) 
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4. Artificial Neural Network (ANN) Based Channel Estimation 

 

4.1. ANN Basics 

According to the basic definition, ANNs are comprised of a number of extremely linked, 

adaptive and simple groups of elements that are capable of exceptionally complex and 

parallel computations for data processing and artificial intelligence (AI) [43]. ANNs are 

inspired from the actual structures of the biological neurons and their functionality and 

construction can be seen in the modern computing like AI. The structure of biological 

neuron is quite simple, having a cell body containing a nucleus that acts as the command 

center, axons that connects the body part to the synapses and dendrites that act as the 

transmitters for the neuron. Human brain consists of a large number of such neurons 

building complexly interconnected nodes. An input is taken by these nodes from the 

other nodes or the external environment that is then independently processed in the 

same node causing an activation to produce output that triggers a response to the next 

layer of nodes or to an external output [44]. Fig. 11 shows the basic structure of the 

biological neuron [45]. 

 

Figure 11: Basic Structure of Biological Neuron  

22 

 



ANN structure includes three types of layer levels. First is the input layer through which 

the ANN takes the input, next is the hidden layer where the inputs are actually processed 

and ANN gives the output through the next in line output layer. The input layer isn’t 

considered to be a part of the layer structure because it doesn’t perform any 

computations and hence, have no neurons. Hidden layer level may or may not have 

multiple number of layers and each hidden layer with multiple neurons. The outputs are 

specified automatically according to the problem so, the only layer and its number of 

neurons that are required to be specified is the hidden layer. Fig. 12 specifies the 

structure of an ANN [46]. 

 
Figure 12: Structure of a simple Feed Forward ANN with R inputs, and S number of neurons in 

hidden layer  

The number of layers and neurons in those layers specify the network topology and are 

important as the classification of ANNs are done on this basis which in turn defines the 

usage of the network. Due to the complex connections between the nodes and layers, 

ANN can learn and adapt to a set of sample data and can generalize a vast types of 

problems. The training of a network and its usage is a relatively easier task, however, 

selection of a network topology and its parameters is bigger chunk of the work. 

4.1.1. Classification of ANNs 
ANNs can be classified on the basis of two factors, its usage and the architecture as 

discussed in [43]. The network architecture consists of the input layer, hidden layer 
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including its neurons and output layer together with their transfer or activation 

functions. A bias is sometimes also added to the total weighed sum of the network layer. 

• Architecture 
Classification of a network on the basis of its layers’ structure, number of neurons, 

addition of bias and the connections between the layers comes under the umbrella of 

its architecture. For simple problems, a simple network with one layer might be enough, 

but as the problem gets complex, a relatively complex network might be required. A 

network comprising of more than one layer is known as a multi-layer network and is 

shown in fig. 13 [46]. 

 

Figure 13: A Multi-Layer Feed Forward Network with 3 hidden layers  
Further difference in the network can be caused by the backward connections from one 

layer to the previous ones. A network is called recurrent network if it has a feedback 

connection from its output to the input of the previous layer and are potentially more 

powerful than the FFNN [46]. 

Every layer is connected to the other layer via a weight value and each layers has its own 

bias value as well. These weights and bias value are updated according to the learning 

rule that is used to train the network. The functions that define the relationship between 

the input and outputs of a layer are called transfer functions and any transfer functions 

from many given functions can be used according to the problem’s requirement. Most 

commonly used transfer functions are Linear, Hyperbolic Tangent Sigmoid and Log 

Sigmoid functions. 
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• Usability 
The other classification factor is the usage of the network. ANNs are used for a vast types 

of problems including classification, pattern recognition, function fitting, time-series 

analysis, data reduction, prediction and control etc. Several types of ANN architectures 

have been proposed in order to solve these problems. Some of them are SOMs, Kohonen 

network, Hopfield network, back propagation multi-layer perceptron [47]. 

4.1.2. Network Learning 
There are two types of learning, namely Supervised and Unsupervised learning. In 

unsupervised learning, the network is not presented by a training sequence, instead it is 

given a dataset and the network clusters the data into different classes. The method in 

which a learning algorithm is used to adjust network parameters according to the given 

training set, is called supervised learning. Supervised learning problems are further 

classified into two categories, regression and classification problems. In classification, 

the network is used to map the input vector to one of the discrete output values. As the 

name suggests, it learns to classify that which specific output class the input vector 

belongs to. However, in regression, the network maps the input vector to a continuous 

output, meaning it maps the input variables to some continuous function. 

Before the network can be used to solve any given problems, it has first to be trained by 

giving a sample data on which the network adjusts its weights and biases. The training is 

done by giving the network a training set of the data and a target set. Network learns on 

the base of the training set and adjusts its parameters so that it can map the training 

sequence to the given target sequence. Target sequence is the required output we 

expect from our network after it is given a new set of data to generalize. During the 

training part, network learning is carried out i.e. network adjusts its parameters 

according to specific set of rule. These set of rules are defined by different specified 

Training Algorithms. Different training algorithms are used for different set of problems 

and for different network architectures. The problem of channel estimation comes 

under the umbrella of regression, and Resilient Backpropagation (Rprop) algorithm is 

used as the training function. 
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4.2. Multilayer Perceptron (MLP) 
In supervised learning standard, network is provided by a required output d for each 

input pattern. During the learning process, the output y generated by the network may 

not be equal to the required output d. The difference between these network output 

and the desired output gives the error i.e. 𝑒𝑒 = 𝑑𝑑 − 𝑦𝑦. The concept of perceptron is to 

use this error to readjust the layer weights and biases so that this error can be minimized 

[45]. A network with this error correction rule and having more than one layer, is known 

as a Multilayer Perceptron (MLP). An MLP is a FFNN with having multiple layers and an 

error back-propagation rule. The network learning is performed only when the network 

makes an error [45]. Due to its simplicity and better error correction performance, MLP 

combines with Rprop algorithm, is our first choice to use as the network architecture for 

the channel estimation. 

4.2.1. MLP Training with Resilient Backpropagation (Rprop) 
The resilient backpropagation learning algorithm is a gradient-based batch update setup 

that works on the basis of Manhattan Update rule. The need of Rprop arises from the 

fact that the ANNs use sigmoid functions in the layers that work on the basis of slope 

approaching zero when input gets large. This causes problem when we try to train the 

ANNs with Steepest Descent algorithm. Rprop solves these issues with the magnitude of 

the direction and, hence, only takes in account the sign of the derivative. 

After the cascade-correlation algorithm and Levenberg-Marquardt (LM) algorithm, 

Rprop is the fastest weights update algorithm. LM being fast takes more memory and 

this prohibits to use LM in our case of large network. As we’ll see in the next chapters 

that the size of the network is directly proportional to the resolution 𝜌𝜌 and the number 

of subcarriers 𝑁𝑁 used for our communication system model because of sparsity, so the 

use of Rprop is the best choice as the training algorithm for our network. 

4.3. Proposed ANN for Channel Estimation 
As discussed in the previous section that the type of network used in this study is the 

multilayer perceptron with Rprop algorithm as the training function. Further details 

about the complete ANN models will be discussed in the subsequent sections. The 
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simulations, data generation and all other functions being performed are done in 

Matlab® environment. In this chapter, the name of those variables will be defined and 

used for notational simplicity. 

4.3.1. ANN Model 
After the decision about the network type and the training function have been made, 

the other parameters of the network architecture are to be found and the complete 

model is then devised using those parameters. The most important steps making use of 

afore-mentioned parameters are given as follows: 

• Generation of sample space 

o Data preparation 

 Training set 

 Target set 

 Ratio of training set to be used as train, validation and test subsets 

 Normalization of data vectors with zero mean and unit variance 

• Layers transfer functions 

• Find optimal initial values for 

o Weights’ matrix 

o Number of hidden layers 

 Number of neurons in each hidden layer 

• Training and optimization of the network 

• Use of the optimized network 

After a hit and trial method and training a number of NNs with different initial conditions, 

several different number of neurons and hidden layers, we select the NN with the best 

performance. This is further discussed in the following subsection.  

Please note that there is no proved way of finding an optimized NN for a specific 

problem. However, by optimization here we mean to select the best NN on the base of 

its performance, among several trials with different initial conditions. 
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4.3.2. Generation of Sample Space and Preparation of Inputs 
Before creating the required neural network, it is important that we have the sample 

data in the form as required by the input of the network. The input to the network will 

be a collection of pilot symbols of the received OFDM signals generated by the models 

as discussed in the previous chapters. The target vectors will be a collection of the known 

equivalent channel vectors c specific to the received pilots. Each received signal in the 

training set have a corresponding target set of the channel coefficients specific to its 

received signal. 

For the generation of the training and target dataset, the observation model given in (7) 

is used. The training set used in our simulations is made up of multiple parts, each part 

contains multiple samples (i.e. 200) of the received pilot symbols collected for a specific 

SNR level. Similarly, the next parts of the training dataset are produced for other SNR 

values and all the parts are collected in one matrix. The SNR values used for the 

production of training and target datasets are from 𝑆𝑆𝑆𝑆𝑆𝑆 = 11 to 𝑆𝑆𝑆𝑆𝑆𝑆 = 30 with the 

step of size 3. This completes our training dataset. The target dataset is the collection of 

the equivalent discrete-time channel vector 𝒉𝒉[𝒏𝒏] specific to the received pilot symbols 

in the training set. The total number of samples in the sample space of training and target 

sets are: {# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (500)  ×  # 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (7)  =

 3500}. 

Training method plays a vital role in NN performance and the data used for the training 

impacts the training significantly. This gives basis of the fact that we trained our NN with 

signals for different SNR levels so that it can learn the impact of SNR on the system; and 

can use it to effectively predict the channels with differing SNR levels. 
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Figure 14: MLP-ANN model used with separate Real and Imaginary Inputs 
A fact to keep in mind at this point is that the network does not take arbitrary values as 

inputs and only takes real valued sample space. Therefore, we separate the samples of 

sample space into real and imaginary parts. Separating the real and imaginary values of 

input and target vector and vertically concatenating them into a training and target 

sequences solves the above hurdle and network now have two inputs with the vector 

from real values on top and the one from imaginary on the bottom. Let us denote the 

matrix consisting of the samples space for training and target set as 𝜲𝜲 and 𝜢𝜢 

respectively. 

The output of the network will also be the same and the real and imaginary parts are 

then joined at the output by doing the reverse process that was done at the input. 

Therefore, the model of our network looks like as shown in fig. 14. 

The training and target sets are then divided into three subsets with train subset to train 

the network, validation subset to check the how well network performs on 

generalization and a test set to test the performance of the network on unseen data. 

The actual training and target sets are divided, however, the indices of the sample space 

are made fixed for subsequent subsets. The indices are get by using the dividerand() 

function of Matlab® by giving it the ratios of the subsets. The indices gotten from this 

function are then used to update the network parameter related to the index values of 

the subsets, which will be discussed in the following sections. 
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4.3.3. Network Creation and Training 
Next step is to create a network with the above given functions and an optimal set of 

parameter such as initial values of weight and bias matrices, and hidden layers’ matrix 

𝑶𝑶. 𝑶𝑶 contains a combination of different number of hidden layers with different number 

of neurons for each layer. The optimal parameters are obtained by training the network 

in a nested loop with the outer loop running for each combination of hidden layers 𝑶𝑶 

and the number of neurons while the inner loop runs a number of times e.g. 5 for 

different random initial values, and the performances for each of these combinations 

stored in a vector. At the end of this nested loop, the performances are compared and 

the network with the best performance is used in estimation process. The performances 

of these network architecture are calculated using the Matlab®’s perf() function that 

calculates MSE for a set of input variable specified to a network. The network with the 

lowest value is the network with optimal parameters under the current settings. 

 

Figure 15: Performance vector for multiple trainings 

Fig. 15 gives an insight to the performance vector when a network is trained five times. 

It can be seen that each run of the training produced different performance. The 

network with performance in index 2 was used. As it can be seen in Fig. 16, that the 

default transfer functions for each layers are used. The transfer function for hidden 

layers is tansig.  

The final network model for training is shown in the following figure: 
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Figure 16: Neural Network model after training (nntraintool) 
The neural network used for the channel estimation uses one hidden layer with 500 

neurons and one output layer. The size of the output layer of the neural network is 

directly related to the resolution factor 𝜌𝜌 while the number of input connections are 

dependent upon the pilot spacing Υ. Table 1 shows the final neural network parameters 

and functions used in training in reference to the model showed in fig. 16. 

 

Table 1: ANN Parameters and Functions 
Parameter Value Parameter Value 

# of outputs 1 # of inputs 1 

# of hidden layers 1 
# of hidden 

neurons 
500 

Input size 𝑁𝑁𝑝𝑝 × 2 # of samples 4000 

# of layers 1 Bias connect [1;  1] 

Input connect  [1;  0] Layer connect [0  0;  1  0] 

Output connect [0  1] Adapt function ‘defaultderiv’  

Divide function ‘dividerand’ Divide Parameters [0.5  0.2  0.3] 

Performance Func. ‘MSE’ Train function ‘trainrp’ 
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4.4. Estimated Channel: 
After the network has been trained with the training sequence, it is now ready to be 

used as a channel estimator. The estimated channel is then equalized and the symbol 

error rate (SER) is calculated for several values of SNR. Fig. 17 shows the SER-SNR plot 

for the system using the NN based estimator. The estimator has performed well for the 

overall system performance and SER is not far from the equivalent channel vector in 

performance.   

 
Figure 17: Performance comparison for ANN estimate, original and equalized channel (𝜌𝜌=8, 

𝛶𝛶=8) 
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5. Simulations Results 

 

Simulations for a number of different OFDM parameters, MP algorithm and with 

different network topologies and architectures were carried out using Matlab®’s 

simulation environment. A computer with the following specification was used for 

running the simulations (table 2). 

 

Table 2: PC Resources and Capabilities 
Item Value 

System Type X64-based PC 

Processor Intel core i7-4500U CPU @ 1.81 GHz 

Total Physical Memory 16 GB 

Total Virtual Memory 25GB 

Parallel Computing Capability  Yes (NVidia GPU) 

Following table shows the parameters used for the communication system under 

consideration in this study – unless specified otherwise. 

 

Table 3: Communication System's Parameters 
Parameter Value 

No. of sub-bands (N) 512 
No. of used sub-bands (K) 180 * N/256; 

Subcarrier spacing (∆𝒇𝒇) – LTE  15*KHz 
Bandwidth 10*MHz * N/1024 

Carrier frequency (𝒇𝒇𝒄𝒄) 2.5*GHz 
Constellation type QPSK 
No. of multipath 3 
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5.1. Performance Analysis of ANN and MP Algorithms 
The performance based comparisons are done in this chapter for both channel 

estimators discussed in the preceding sections. Monte-Carlo simulations were done on 

both methods and the comparative figures are drawn from such simulations. We 

compare the efficiencies in terms of SER and SNR values and the simulation results show 

the gain and loss in terms of SER. The channel estimators are also compared in terms of 

the factors that have been discussed in the previous sections that affect the efficiency 

of the estimators.  

Fig. 18 is SER-SNR comparison of original & equivalent channel representations, MP and 

NN algorithms. It can be seen here that the SER performance of the system using NN 

estimator is equal to the MP estimator at the SNR of 12dB. The NN performs better at 

the lower values of SNR than the MP algorithm; where the noise factor in the system is 

quite large. However, MP algorithm has better performance for the higher values of SNR.  

 
Figure 18: Performance comparison for ANN & MP estimate, original and equalized channel 

(𝜌𝜌=8, 𝛶𝛶=8) 
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These results can further be improved by applying linear MMSE for estimating the pilot 

symbols; for the received signals that are used for the training of the ANN algorithm. 

Until this point, the NN was trained with the received pilot symbols as the training set 

and the actual equivalent channel vector as the target sequence. However, now we show 

that the LMMSE channel estimator can be used to estimate the channel for the received 

pilot symbols which in turn become the input of the NN for the training period. This will 

train the NN in a way that the inputs and the outputs will be closer to each other and 

will in turn enhance the estimation capability of the NN. The target sequence for ANN 

training will be kept same as before. 

The required information for the application of LMMSE are the Noise power 𝑁𝑁0 and the 

correlation matrix 𝑹𝑹 of the channel. With these requirements discussed in above 

sections, LMMSE can now be applied to the pilot symbols. The input matrix for the input 

of neural network 𝑿𝑿 is now modified and more refined values are provided to the NN. 

The improvement in the performance of NN algorithm is considerable and is shown in 

fig. 19. With the SER improvement, the SNR cutoff point for ANN and MP has also moved 

from 𝑆𝑆𝑆𝑆𝑆𝑆 = 12 to 𝑆𝑆𝑆𝑆𝑆𝑆 = 14.  

 
Figure 19: Performance comparison for LMMSE-ANN & MP estimate, original and equalized channel (𝜌𝜌 = 𝛶𝛶 = 8) 
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The above figure forms the major contribution of this work. It can be seen that by using 

LMMSE, the ANN based channel estimation produce better SER performance of the 

system. 

5.1.1. Effect of 𝜌𝜌 and Υ values 
Keeping the updates in the settings mentioned above, the size of pilot spacing Υ and 𝜌𝜌 

will also affect the performance of both algorithms. Increasing 𝜌𝜌 to 20 and keeping Υ =

8; we show in fig. 20 that – though the difference is small – the performance for ANN 

has dropped. NN becomes sensitive to the lower SNR values and now equals to the 

performance of MP at SNR=10.  

 
Figure 20: Performance comparison for ANN & MP estimate, original and equalized channel (ρ=20, Υ=8) 

Using the same parameters as in the fig. 20 but with LMMSE, the comparison is shown 

in fig. 21. If we relate fig. 19 with fig. 21, we see that even with LMMSE, increasing the 

resolution decreases ANN’s performance slightly. One interesting fact that needs a 

mention here is that performance of ANNs is quite sensitive to the change in its input in 

terms of system performance. The reason being, this network architecture was carefully 

selected after intense simulations and is specific to the problem size and type. However, 
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the complexity of the system is not much affected by these changes. On the other hand, 

the overall performance in terms of SER is improved for all the systems as shown in the 

following figure. 

 
Figure 21: Performance comparison for LMMSE-ANN & MP estimate, original and equalized 

channel (ρ=40, Υ=8) 

To further the discussion, lets now change 𝜌𝜌 to 16 and Υ to 16; the effect on the 

performance of both algorithms can be observed in Fig. 22. From fig. 22 it is clear that 

the pilot spacing cannot be increased from a certain point. This decreases the total 

number of pilot symbols and the overall efficiency of the system becomes unacceptable. 

Most acceptable pilot spacing is Υ = 8, after that the system performs poorly regardless 

the algorithm used for estimation. However, we see that the proposed NN algorithm 

performs a little better under tougher conditions. 
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Figure 22: Performance comparison for ANN & MP estimate, original and equalized channel 
(ρ=16, Υ=16) 

After the SER comparisons of the systems being discussed have been debated above, 

following figures will compare the mean-squared error (MSE) of these systems. The 

following fig. 23 is the MSE comparison between the MP and ANN based systems for 𝜌𝜌 =

40 and 𝛶𝛶 = 8. Here we can see that the ANN based systems perform a lot better even 

in terms of MSE as compared to the MP based systems. ANN based system performs a 

lot better than MP based system in the presence of smaller SNR values up to the point 

where 𝑆𝑆𝑆𝑆𝑆𝑆 = 16. The system parameters for this MSE comparison are same as system 

parameters used in fig. 21. Fig. 23 gives the MSE comparison between MP and ANN 

based systems for 𝜌𝜌 = 40 and 𝛶𝛶 = 8. It can be observed in the following figures that the 

cutoff point between the performances of ANN and MP based algorithms is at 𝑆𝑆𝑆𝑆𝑆𝑆 =

14 and this MSE value is better for greater value of 𝜌𝜌 – even though the difference is 

small. 
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Figure 23: MSE vs SNR comparison of MP and ANN based systems (𝜌𝜌 = 40,𝛶𝛶 = 8) 

 
Figure 24: MSE vs SNR comparison of MP and ANN based systems (𝜌𝜌 = 2,𝛶𝛶 = 8) 

39 

 



5.2. Complexity Analysis 
The channel estimation algorithms can become computationally inefficient as a matrix 

inversion is required in most of the classical algorithms. The size of this matrix increases 

with the increased number of inputs and so does the overhead due to the inversion. 

ANNs, however, do not require any matrix inversion, therefore, are proven to be less 

complex. Computational complexity is a separate field of study altogether that deals 

with the classification of computational problems according to their difficulty and relate 

these complexity classes with each other. In other words, computational complexity 

theory helps in determining the practical limits on what computers are capable of and 

what they’re not. 

A problem is supposed as difficult if it requires significant resources to be solved no 

matter what algorithm is used. The theory discusses different problems on the basis of 

their difficulty by giving models of computations, and measures the resources required 

to solve these problems – like storage and time. Several classes of complexity are used 

to classify problems on the basis of above facts and are supposed to have different 

resource requirements. Non-deterministic Polynomial (NP) is one of the classes of 

computational complexity with variates as NP-hard and NP-complete. A sparse 

approximation of a signal is an important issue in many fields today and many algorithms 

have been proposed for a good sparse approximation in polynomial time like MP. But to 

design an algorithm that gives a good approximation performance and is flexible in 

complexity for the large signal dimensions. Also, the universal problem of finding the 

best m-term estimate is non-deterministic polynomial (NP-Complete)  [27]. 

The computational complexity of algorithm is defined as the number of 

steps/calculations it has to make in order to solve a problem given an amount of space 

and time. The space complexity is ignored when comparing the computational 

complexity of algorithms and time complexity is used. The complexity of an algorithm is 

often expressed using big O notation. 
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5.2.1. Big-Oh Notation 
Big O notation, also called Landau's symbol, is a representation used in complexity 

theory, computer science, and mathematics to label the asymptotic conduct of 

functions. Fundamentally, it expresses how fast a function grows or declines. The letter 

O is used because the rate of growth of a function is also called its order. The big O 

notation is used to classify different algorithms by how the algorithms react to the 

change in their input size. For example, how the running time of an algorithm changes 

with the increase in the problem size. There is no mechanical way of finding the Big O of 

an algorithm, however, there are some agreed upon methods that define the required 

resources for most of the calculations performed in the algorithms.  

The Big O notation is useful in the analysis of the programs’ efficiency e.g. the amount 

of time or number of steps it takes for an algorithm to solve a problem of size n. If the 

time it takes is said to be for example 𝑇𝑇(𝑛𝑛) = 4𝑛𝑛2 − 2𝑛𝑛 + 2, then the lower order terms 

are neglected as the 𝑛𝑛2 term dominates when the problem size is increased sufficiently. 

The big O notation of this program is then said to be 𝑇𝑇(𝑛𝑛) ∈ 𝑂𝑂(𝑛𝑛2). 

 MP 
MP algorithm has shown to have lower computational complexity than its other variants 

like OMP and GP but it also suffers from a higher error floor [27]. The computational 

bottleneck for MP is faced at the maximization step where a matrix multiplication is 

required [28]. The computational complexity of MP algorithm in its most basic form is 

compared with its other variant in the following table [27]. 

Table 4: Complexity order of greedy (MP) algorithms for a given iteration 
Step MP OMP GP 

Selection Correlations 𝜌𝜌 ∗ 𝑁𝑁2 𝜌𝜌 ∗ 𝑁𝑁2 𝜌𝜌 ∗ 𝑁𝑁2 
Maximum 𝜌𝜌 ∗ 𝑁𝑁 𝜌𝜌 ∗ 𝑁𝑁 𝜌𝜌 ∗ 𝑁𝑁 

Update Gram Matrix 0 𝑖𝑖 ∗ 𝑁𝑁 0 
Coefficients 0 𝑖𝑖2 𝑖𝑖 ∗ 𝑁𝑁 
Residual 𝑁𝑁 𝑖𝑖 ∗ 𝑁𝑁 𝑁𝑁 

From the above table it can be seen that the computational complexity of MP algorithm 

is:  
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𝑇𝑇(𝑛𝑛) = 𝜌𝜌 × 𝑁𝑁2 + 𝜌𝜌 × 𝑁𝑁 + 𝑁𝑁    (8) 

for each iteration and 𝑁𝑁 denotes the total number of columns in the dictionary matrix 
𝑨𝑨. 

Consequently, 

𝑇𝑇(𝑛𝑛) ∈ 𝑂𝑂(𝑁𝑁2)      (9) 

Hence, it is identified that the computational time of MP algorithm increases 

exponentially with the increase in the input size. 

 ANN 
ANNs on the other hand are relatively hot topic for researchers as they pose some 

challenges when it comes to their optimization or the most optimized algorithm for a 

given problem. This topic has long been debated that which computational complexity 

class they belong to and what class of problems can be solved using ANNs. Just like any 

other algorithm, the computational complexity of a NN with predefined set of weights, 

initial condition, number of layers and number of neurons in those layers, is dependent 

on the size of the network input. When we talk about the input size of a NN in terms of 

computational complexity, it is dependent on a number of factors, mentioned bellow: 

• Total number of layers 𝑶𝑶 

• Total number of neurons in each layer 𝒐𝒐 

• Size of the input 

• Number of epochs 

• Size of the sample space i.e. train/target pairs 

The important parameters when comparing different networks are the size, depth and 

weight of the network. They are defined as the number of neurons, distance from an 

input neuron to the output neuron and the sum of all the weight values in the network. 

A theorem mentioned in [48] suggests that the polynomial size threshold networks with 

size 𝑠𝑠 can be represented in 𝑂𝑂(𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠). Similarly, the author of [49] argues that the NN 

is powerful enough to solve the class of problems known as NP-hard. This is the base of 
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the fact that the sparse channel estimation problem can be effectively solved by NNs 

and with lower complexity than the MP algorithm. 

The total number of connections – including weights and biases for all nodes – in a NN 

architecture can be found by:  

# 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑜𝑜1  ×  𝑜𝑜2  × … ) × 2 + 𝑜𝑜1 + 𝑜𝑜2 + ⋯   (10) 

Where 𝑜𝑜𝑖𝑖  denotes the number of neurons in 𝑖𝑖 − 𝑡𝑡ℎ layer and the addition of layers’ 

nodes in the second part of (10) is due to the bias values for each node. Total number of 

weights for our architecture is calculated as: 

# 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (500 × 1280) × 2 + 500 + 1280 

= 1,281,780 

The change in the output layer neurons is dependent on 𝜌𝜌 and hence, change in 

resolution makes NN more complex and most probably to make them less efficient – as 

discussed in section 5.1.1. The size of NN input during training and testing phases, is 

dependent on pilot spacing but change in the input layer connections doesn’t change 

the total number of neurons in the architecture; so the effect on complexity is not much 

but it can still degrade its predicting power. 

Keeping the fact in mind that the training of the ANN is done offline, makes it easier to 

calculate the computational complexity of the ANN for the testing phase. In other words, 

the complexity of the ANN for the testing phase is just a bunch of multiplications and 

additions i.e. its linear to the size of the input. That been established, the complexity is 

then the total number of connections within the NN architecture as calculated above 

using (10).  

Big O of a NN can be found and as mostly the operations for each iteration/epoch are 

counted for finding the polynomial of input space, we can collect all the operations to 

see how the NN reacts to the increasing input. Intensive simulation can be run to show 

that the time taken by NN to solve the discussed problem is dependent on total number 
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of neurons and size of the sample space that actually define the input of a NN in terms 

of complexity. NN performs in liner time with respect to the input size for our problem. 

Though the optimization of NN is impossible until today, but, it doesn’t have a 

computational bottleneck as opposed to MP algorithm as discussed above.  
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6. Conclusion 

 

Two different algorithms have been used for the sparse channel estimation and 

compared in terms of the system’s SER against several different SNR values. The 

simulation results have shown that the proposed ANN based estimation performs better 

in terms of SER for the smaller SNR values when it is trained with the LMMSE estimated 

data. MP algorithm have shown to have a little better performance for the larger values 

of SNR; as it would be expected of any estimation algorithm because the ratio of the 

noise is much smaller than the signal. However, for the smaller SNR values the noise 

factor is strong and the proposed algorithm has shown to be more affective. These 

claims are proved in Fig. 22 where it can also be observed that the NN estimation is now 

less sensitive to the SNR value of the system. If an optimized network can be found and 

trained for channel estimation, considering NNs’ usefulness and power, it can be said 

that it will not give far better performance than MP in terms of BER but might as well be 

computationally a lot cheaper than the MP algorithm. Author aims to extend this idea of 

ANN based channel estimation to linear time varying Sparse channels as well. This study 

poses some further work as well; the optimization of NN for better communication 

system throughput and the way to compute the complexity of the optimized NN will help 

in designing faster and less complex systems.  
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