Eroğlu, DenizTsallis, ConstantinoLima, Henrique SantosTirnakli, UgurEroglu, Deniz2023-10-192023-10-19202320167-27891872-8022https://doi.org/10.1016/j.physd.2023.133681https://hdl.handle.net/20.500.12469/5159We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V.eninfo:eu-repo/semantics/openAccessNonextensive statistical mechanicsConductionLangevin dynamicsLinear transport phenomenaConductionIrreversibilityFirst-principle validation of Fourier's law in d=1, 2, 3 classical systemsArticle446WOS:00099563330000110.1016/j.physd.2023.1336812-s2.0-85147730951Q1Q1