Birgul, KaanUba, Abdullah IbrahimCuhadar, OzanSevinc, Sevgi KocyigitTiryaki, SelenTiber, Pinar MegaOrun, Oya2023-10-192023-10-19202240022-28601872-8014https://doi.org/10.1016/j.molstruc.2022.132739https://hdl.handle.net/20.500.12469/5150New thiosemicarbazides (3, 5-6), 1,2,4-triazoles (14-15) and thioethers (22-68) from derived (S)-Naproxen were synthesized in this study. The structure of these compounds were elucidated by spectral (FT-IR, H-1 NMR, C-13 NMR) methods, besides elemental analysis and TLC. The molecular binding of the compounds on MetAP-2 was performed. Anticancer effects of the synthesized compounds were studied by using MTT assay method on MCF-7 (includes oestrogene and progesterone receptors) and MDA-MB-231 (lacks estrogen and progesterone receptors) adenocarcinoma cell lines at 0, 10, 25, 50, 75 and 100 mu M concentrations for 24 h. The IC(50 )values of novel (S)-Naproxen derivatives were determined between from 5 to 100 mu M on MCF-7 breast cancer cell line and MDA-MB-231 cell lines. The apoptotic activity of selected compounds 22 and 42 were first analyzed by Annexin V staining using Tali Image-Based Cytometer. Mitochondrial membrane potential changes determined in fluorescence plate reader following JC-1 stain for compounds 22 and 42 in MCF-7 and MDA-MB-231 cells. The effect of these compounds on the cell viability 4T1 mouse mammary tumor cell line was tested at 1 to 5 times of calculated IC50 value (IC(50)x1, IC(50)x2, IC(50)x3, IC(50)x4, and IC(50)x5). Next in order to determine the toxicity of the combination of compound 51 and Docetaxel, WST-1 cell viability and proliferation assay was performed with 4T1. (C) 2022 Elsevier B.V. All rights reserved.eninfo:eu-repo/semantics/closedAccessApoptosisNaproxenNaproxenThioetherNaproxenBreast cancer cell lineAnticancerTriple negative cancerAnticancerMetAP2Synthesis and Molecular Modeling of Metap2 of Thiosemicarbazides, 1,2,4-Triazoles, Thioethers Derived From (s)-Naproxen as Possible Breast Cancer AgentsArticle1259WOS:00082036480000910.1016/j.molstruc.2022.1327392-s2.0-85125952901Q2