Dilcan, GoncaDoruker, PemraAkten, Ebru Demet2019-06-272019-06-27201981747-02771747-02851747-02771747-0285https://hdl.handle.net/20.500.12469/304https://doi.org/10.1111/cbdd.13478This study investigates the structural distinctiveness of orthosteric ligand-binding sites of several human beta(2) adrenergic receptor (beta(2)-AR) conformations that have been obtained from a set of independent molecular dynamics (MD) simulations in the presence of intracellular loop 3 (ICL3). A docking protocol was established in order to classify each receptor conformation via its binding affinity to selected ligands with known efficacy. This work's main goal was to reveal many subtle features of the ligand-binding site presenting alternative conformations which might be considered as either active- or inactive-like but mostly specific for that ligand. Agonists inverse agonists and antagonists were docked to each MD conformer with distinct binding pockets using different docking tools and scoring functions. Mostly favored receptor conformation persistently observed in all docking/scoring evaluations was classified as active or inactive based on the type of ligand's biological effect. Classified MD conformers were further tested for their ability to discriminate agonists from inverse agonists/antagonists and several conformers were proposed as important targets to be used in virtual screening experiments that were often limited to a single X-ray structure.eninfo:eu-repo/semantics/closedAccessbeta(2)-adrenergic receptorbinding affinitydistinct conformerdockingintracellular loop 3scoring functionLigand-binding affinity of alternative conformers of human beta(2)-adrenergic receptor in the presence of intracellular loop 3 (ICL3) and their potential use in virtual screening studiesArticle883899593WOS:00046881450001810.1111/cbdd.134782-s2.0-85061485520N/AQ230637937