Abdul Rahman, S.Karabacak, Ö.Wisniewski, R.2025-05-152025-05-15202597830318569900302-9743https://doi.org/10.1007/978-3-031-85700-3_20https://hdl.handle.net/20.500.12469/7351The feedback-based algorithm for quantum optimization (FALQON) has recently been proposed to find ground states of Hamiltonians and solve quadratic unconstrained binary optimization problems. This paper efficiently generalizes FALQON to tackle quadratic constrained binary optimization (QCBO) problems. For this purpose, we introduce a new operator that encodes the problem’s solution as its ground state. Using control theory, we design a quantum control system such that the state converges to the ground state of this operator. When applied to the QCBO problem, we show that our proposed algorithm saves computational resources by reducing the depth of the quantum circuit and can perform better than FALQON. The effectiveness of our proposed algorithm is further illustrated through numerical simulations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.eninfo:eu-repo/semantics/closedAccessFeedback-Based Algorithm For Quantum OptimizationLyapunov ControlNoisy Intermediate-Scale Quantum DevicesQuadratic Constrained Binary OptimizationVariational Quantum AlgorithmsFeedback-Based Quantum Algorithm for Constrained Optimization ProblemsConference Object27728915580 LNCS10.1007/978-3-031-85700-3_202-s2.0-105003269860N/AQ3