Şenol, HabibŞenol, HabibCirpan, Hakan AliPanayırcı, Erdal2019-06-282019-06-282005121687-14721687-1472https://hdl.handle.net/20.500.12469/1678https://doi.org/10.1155/WCN.2005.163This paper first proposes a computationally efficient pilot-aided linear minimum mean square error (MMSE) batch channel estimation algorithm for OFDM systems in unknown wireless fading channels. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion no matrix inversion is required in the proposed MMSE estimator. Moreover optimal rank reduction is achieved by exploiting the optimal truncation property of the KL expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach is studied through analytical and experimental results. We then consider the stochastic Cramér-Rao bound and derive the closed-form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance. To further reduce the complexity we extend the batch linear MMSE to the sequential linear MMSE estimator. With the fast convergence property and the simple structure the sequential linear MMSE estimator provides an attractive alternative to the implementation of channel estimator.eninfo:eu-repo/semantics/openAccessChannel estimationMMSE estimationOFDM systemsA low-complexity KL expansion-based channel estimator for OFDM systemsArticle1631742200510.1155/WCN.2005.1632-s2.0-24344497394N/AN/A