Browsing by Author "Arpa, Tuba"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Gelı̇şmekte Olan Ülkelerde Matematı̇k Başarısını Etkı̇leyen Faktörlerı̇n Araştırılmasında Makı̇ne Öğrenme Teknı̇klerı̇nı̇n Kullanılması: Türkı̇ye, Meksı̇ka, Tayland ve Bulgarı̇stan Örneğı̇(2023) Arpa, Tuba; Çavur, MahmutMatematik tüm eğitim sistemlerinin vazgeçilmez bir parçasıdır. Çünkü matematik, hem günlük yaşamın önemli bir unsuru hem de pek çok meslek ve alan için olmazsa olmaz bir temeli teşkil etmektedir. Bu nedenle, matematik başarısını etkileyen unsurları belirlemenin, ülkelerin gelişimine katkı sağlayacağı söylenebilir. Bu doğrultuda, bu çalışmada PISA 2018 verileri kullanılarak, benzer eğitim sistemi ve ekonomik gelişmişliğe sahip dört ülke olan Türkiye, Bulgaristan, Meksika ve Tayland'ın matematik başarılarını etkileyen faktörleri makine öğrenmesi modelleri ile belirlemek, bu modellerin başarılarını karşılaştırmak amaçlanmıştır. İlgili alanyazında bu amaç için sıklıkla sınıflandırma algoritmaları tercih edildiği görülmektedir. Bu çalışmada hem sınıflandırma hem de regresyon modelleri kullanılmıştır. Çalışmada, regresyon algoritması olarak doğrusal regresyon, destek vektör regresyonu, karar ağacı regresyonu ve rastgele orman regresyonu; sınıflandırma algoritması olarak ise lojistik regresyon, destek vektör sınıflandırması, karar ağacı sınıflandırması ve rastgele orman sınıflandırması kullanılmıştır. Ayrıca, matematik başarısını tahmin etmek için en önemli faktörlerin belirlenmesinde XGradient Boosting algoritması kullanılmıştır. Son olarak, eksik verilerin doldurulmasında, K-Means metodu tercih edilmiştir. Çalışmanın sonuçlarına göre, dört ülke için de matematik başarına en büyük katkı sağlayan değişkenlerin öğrencinin ekonomik, sosyal ve kültürel statüsü, öğrencinin evde sahip olduğu çalışma materyali, öğrencinin sahiplik hissi ve ailenin refah düzeyi olduğu bulunmuştur. Model başarısı açısından hem regresyon hem de sınıflandırma açısından en yüksek başarıya sahip algoritmanın rastgele ormanlar olduğu bulunmuştur. Ayrıca, sınıflandırma algoritmaları ikili ve üçlü sınıflandırma üzerinden incelenmiş, ikili sınıflandırmanın daha yüksek başarıya sahip olduğu görülmüştür. Sonuç olarak, çalışmamızda elde edilen bulgular matematik başarısını tahmin etmede kullanılacak en uygun algoritmanın seçimi v konusunda önemli bir öngörü sunmaktadır. Ayrıca, çalışmanın bulguları, eğitim politikalarının geliştirilmesi ve öğrenci başarısını artırmak için uygulayıcı ve politika yapıcılara önemli iç görüler sağlamaktadır.