Browsing by Author "Aydin, Emrullah"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation Count: 5A 1-kW wireless power transfer system for electric vehicle charging with hexagonal flat spiral coil(Tubitak Scientific & Technical Research Council Turkey, 2021) Aydin, Emrullah; AydemIr, M. TimurWireless power transfer (WPT) technology is getting more attention in these days as a clean, safe, and easy alternative to charging batteries in several power levels. Different coil types and system structures have been proposed in the literature. Hexagonal coils, which have a common usage for low power applications, have not been well studied for high and mid power applications such as in electric vehicle (EV) battery charging. In order to fill this knowledge gap, the self and mutual inductance equations of a hexagonal coil are obtained, and these equations have been used to design a 1 kW WPT system with hexagonal coils for a mid-power stage EV charging. The theoretical and simulation results have been validated with an implementation in the laboratory and a DC-to-DC power efficiency of 85% is achieved across a 10 cm air gap between the perfect aligned coils. The misalignment performance of the system was observed for different positioning of the secondary coil, and the output power variation is given. In addition, the effect of shielding on magnetic field exposition of a driver sitting in an EV was obtained, and these simulation results were compared in order to check the compliance with international health standards.Article Citation Count: 1Design and Implementation of a 10 Kv/10 Kw High-Frequency Center-Tapped Transformer(Springer, 2022) Rahman, Showrov; Candan, Muhammed Yusuf; Tamyurek, Bunyamin; Aydin, Emrullah; Mese, Huseyin; Aydemir, M. TimurHigh voltage high-frequency (HVHF) transformers have a crucial part in the realization of high voltage direct current (HVDC) isolated power supplies. Nevertheless, they are the bulkiest component in the system besides being one of the major contributors to the power losses. Special care is therefore required to design HVHF transformers. The main objective of this paper is to design and implement a high voltage (10 kV), high-frequency (50 kHz) center-tapped transformer with high efficiency, small size, and low cost. The proposed transformer is designed as part of a 100 kV, 10 kW DC/DC converter for supplying power to a particle accelerator. The proposed transformer steps up the input voltage (500 V) to 10 kV. Then, a five-stage full-wave Cockcroft-Walton voltage multiplier (CWVM) is used for boosting the voltage to 100 kV. A detailed step-by-step design guideline for designing an HVHF transformer is also presented. To reduce the transformer's parasitic capacitance, the secondary windings are wrapped in segments. This taken approach has been illustrated in the paper and later verified through finite element analysis (FEA). The FEA analysis shows that the transformer parasitic capacitance has reduced significantly. Following the presented design guideline, the implemented prototype transformer has been built and later tested with a single-stage CWVM. The experimental results demonstrate that the prototype transformer has successfully met the design requirements including the small size, less weight, and low-cost objectives.Review Citation Count: 24Inductive Power Transfer for Electric Vehicle Charging Applications: a Comprehensive Review(Mdpi, 2022) Aydin, Emrullah; Aydemir, Mehmet Timur; Aksoz, Ahmet; El Baghdadi, Mohamed; Hegazy, OmarNowadays, Wireless Power Transfer (WPT) technology is receiving more attention in the automotive sector, introducing a safe, flexible and promising alternative to the standard battery chargers. Considering these advantages, charging electric vehicle (EV) batteries using the WPT method can be an important alternative to plug-in charging systems. This paper focuses on the Inductive Power Transfer (IPT) method, which is based on the magnetic coupling of coils exchanging power from a stationary primary unit to a secondary system onboard the EV. A comprehensive review has been performed on the history of the evolution, working principles and phenomena, design considerations, control methods and health issues of IPT systems, especially those based on EV charging. In particular, the coil design, operating frequency selection, efficiency values and the preferred compensation topologies in the literature have been discussed. The published guidelines and reports that have studied the effects of WPT systems on human health are also given. In addition, suggested methods in the literature for protection from exposure are discussed. The control section gives the common charging control techniques and focuses on the constant current-constant voltage (CC-CV) approach, which is usually used for EV battery chargers.Article Citation Count: 0A Novel Hybrid Coil Design and Implementation for Wireless Power Transfer Systems(Edp Sciences S A, 2024) Pashaei, Ali; Aydin, Emrullah; Ozdemir, Mehmet Akif; Kosesoy, Yusuf; Aydemir, Mehmet TimurWireless Power Transfer (WPT) has been drawing a lot of attention in the last ten years parallel with the market increase in electric vehicles. Although conductive charging methods are still the preferred ones, WPT-based charging systems are used as clean and flexible alternatives. At the center of these systems are the transmitting and receiving coils, and different coil types have been proposed in the literature. This study proposes a square-hexagonal hybrid coil structure to increase magnetic coupling by shaping the magnetic field. In addition, this design aims to minimize the coupling coefficient variation for misaligned coils which is one of the most significant problems in WPT systems. A 3D model of the coils was created and analyzed using ANSYS, Maxwell software. Compared to the conventional square coil structure the coupling coefficient of the proposed structure is less affected by misalignment on the x and y axes, and as a result, it has a better efficiency. In addition, a WPT system operating at 50 W, 85-kHz is designed and tested in a laboratory environment. The FEA analyses and experimental application results largely overlap, and accordingly, the coil-to-coil efficiency of our WPT system was 93.5% and the overall efficiency of the system was 87%.