Browsing by Author "Camalan, Mahmut"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Citation Count: 11Assessment of Chromite Liberation Spectrum on Microscopic Images by Means of a Supervised Image Classification(Elsevier Science Bv, 2017) Camalan, Mahmut; Çavur, Mahmut; Hosten, CetinAssessment of mineral liberation spectrum with all its aspects is essential for plant control and optimization. This paper aims to estimate 2D mineral map and its associated liberation spectrum of a particular chromite sample from optical micrographs by using Random Forest Classification a powerful machine-learning algorithm implemented on a user-friendly and an open-source software. This supervised classification method can be used to accurately generate 2D mineral map of this chromite sample. The variation of the measured spectra with the sample size is studied showing that images of 200 particles randomly selected from the optical micrographs are sufficient to reproduce liberation spectrum of this sample. In addition the 2D spectrum obtained with this classification method is compared with the one obtained from the Mineral Liberation Analyzer (MLA). Although 2D mineralogical compositions obtained by the two methods are quite similar microscopic analysis estimates poorer liberation than MLA due to the residual noise (misclassified gangue) generated by the classification. Nevertheless we cannot compare the reliabilities of the two methods as there is not a standard produce yet to quantify the accuracy of MLA analysis. (C) 2017 Elsevier B.V. All rights reserved.Article Citation Count: 4Development of a Supervised Classification Method To Construct 2d Mineral Maps on Backscattered Electron Images(Tubitak, 2020) Camalan, Mahmut; Çavur, MahmutThe Mineral Liberation Analyzer (MLA) can be used to obtain mineral maps from backscattered electron (BSE) images of particles. This paper proposes an alternative methodology that includes random forest classification, a prospective machine learning algorithm, to develop mineral maps from BSE images. The results show that the overall accuracy and kappa statistic of the proposed method are 97% and 0.94, respectively, proving that random forest classification is accurate. The accuracy indicators also suggest that the proposed method may be applied to classify minerals with similar appearances under BSE imaging. Meanwhile, random forest predicts fewer middling particles with binary and ternary composition, but the MLA predicts more middling particles only with ternary composition. These discrepancies may arise because the MLA, unlike random forest, may also measure the elemental compositions of mineral surfaces below the polished section.Book Part Citation Count: 2Sentinel-1 Sar Verileri Kullanilanarak Maden Kaymalarini ve Deformasyonlarini İzleme [monıtorıng Of Mıne Landslıde And Deformatıon Usıng Sentınel-1 Sar Data](Baski, 2019) Çavur, Mahmut; Camalan, Mahmut; Ketizmen, Hakkı; Ağıtoğlu, SuudIn this study, an original DInSAR method was used to monitor landslides and deformation in a coal mine area. The open-pit mine operation belonging to the Ciner Group in Silopi, Sirnak was selected fort he case study. Between 21 November 2017 and December 31, 2017, 2-month Sentinel-1 data were analyzed every 12 days and interferometric results were obtained. It has been shown that the DInSAR method can be used effectively in order to monitor the mineral movements by using satellite images. The results of the analysis were reported in mm and accuracy analysis was performed on the field. SNAP, Cygwin, and ArcGIS 10.4 software are used for reporting and analysis purposes. The maximum subsidence was measured by radar as 45 mm. The mean subsidence rate of one class was found to be 45 mm as landslide and 46 mm as uplift where cracks most severely developed. The proposed method is an effective method for mining in order to determine the effects that may occur as a result of landslides, displacement, and uplift caused by underground and surface mining.Article Citation Count: 0Tarafsız 3d Mineral Harita Tahminleri Elde Etmek için Random Forest Tree Sınıflandırması Kullanılarak Epoksi Bloklardaki Dikey Kesitlerin Değerlendirilmesi(2021) Camalan, Mahmut; Çavur, MahmutAlansal mineral haritaları, epoksi reçinenin dibine çöken cevher tanelerinin yüzeylerini içeren parlak kesitlerinden yapılmaktadır.Fakat, ağır mineraller nispeten dibe çökebilmekte ve parlak yüzeyi ağır mineraller açısından zengin yapabilmektedir. Bu ise parlakkesitlerden hesaplanan alansal (2D) mineral haritalarının, hacimsel (3D) haritaların taraflı tahminleri haline gelmesine sebepolabilmektedir. Bu çalışma, parlak kesite dik olarak (parçacıkların çökelme yönü boyunca) alınan rastgele bir kesitin bir kromitcevheri numunesinin 3D mineral haritasının tarafsız bir tahmini olarak kullanılıp kullanılamayacağını test etmeyi amaçlamaktadır.Bu çalışmanın amacı için, dikey kesitlerin 2D haritaları, öncesi ve sonrası görüntü işleme araçlarıyla bütünleşmiş Random Forestsınıflandırmasıyla elde edilmiştir. Daha sonra, 2D haritalar, stereolojik hatalar olmadığı varsayılarak 3D mineral haritalarınadönüştürülmüştür. 3D haritalardan tahmin edilen modal mineraloji ve tane boyu dağılımları, sırasıyla XRD ve kuru elemeanalizlerinden tahmin edilen sonuçlarla karşılaştırılmıştır. Herhangi bir 2D harita gerçek analizlere yakın modal mineraloji ve taneboyu dağılımı veriyorsa, bu 2D harita cevher numunesinin 3D haritasının tarafsız bir tahmini olarak seçilmiştir. Bu çalışmanınsonuçları herhangi bir dikey kesitin, ağır minerallerin öncelikli olarak çöktüğü parlak kesitten farklı olarak gerçek 3D haritanıntarafsız bir tahmini olacağını desteklemektedir.Article Citation Count: 0Using Random Forest Tree Classification for Evaluating Vertical Cross-Sections in Epoxy Blocks To Get Unbiased Estimates for 3d Mineral Map(Gazi University, 2021) Camalan, Mahmut; Çavur, MahmutAreal mineral maps are constructed from the polished sections of particles that settle to the bottom of epoxy resin. However, heavy minerals can preferentially settle to the bottom, making the polished surface rich in heavy minerals. Therefore, polished sections will become biased estimates of the volumetric (3D) map. The study aims to test whether any vertical cross-section (any section along the settling direction of particles) can be an unbiased estimate of the 3D mineral map of a chromite ore sample. For the purpose of this study, 2D maps of the vertical cross-sections were acquired by using Random Forest classification coupled with image pre- and post-processing tools. Then, 3D mineral maps were converted from 2D maps without assuming stereological errors. The modal mineralogy and particle size distributions predicted from 3D maps were compared with the same features estimated from the particulate sample by XRD and dry sieving analyses, respectively. Any 2D map which yields a modal mineralogy and a size distribution similar to the true analyses was selected as an unbiased estimate of the true 3D map. The results suggest that any vertical cross-section is an unbiased estimate, unlike polished section at which heavier minerals settle preferentially.