Browsing by Author "Darbandi, Mehdi"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Article Citation Count: 30The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things(Elsevier Ireland Ltd, 2023) Aminizadeh, Sarina; Heidari, Arash; Toumaj, Shiva; Darbandi, Mehdi; Navimipour, Nima Jafari; Rezaei, Mahsa; Talebi, SamiraMedical data processing has grown into a prominent topic in the latest decades with the primary goal of maintaining patient data via new information technologies, including the Internet of Things (IoT) and sensor technologies, which generate patient indexes in hospital data networks. Innovations like distributed computing, Machine Learning (ML), blockchain, chatbots, wearables, and pattern recognition can adequately enable the collection and processing of medical data for decision-making in the healthcare era. Particularly, to assist experts in the disease diagnostic process, distributed computing is beneficial by digesting huge volumes of data swiftly and producing personalized smart suggestions. On the other side, the current globe is confronting an outbreak of COVID-19, so an early diagnosis technique is crucial to lowering the fatality rate. ML systems are beneficial in aiding radiologists in examining the incredible amount of medical images. Nevertheless, they demand a huge quantity of training data that must be unified for processing. Hence, developing Deep Learning (DL) confronts multiple issues, such as conventional data collection, quality assurance, knowledge exchange, privacy preservation, administrative laws, and ethical considerations. In this research, we intend to convey an inclusive analysis of the most recent studies in distributed computing platform applications based on five categorized platforms, including cloud computing, edge, fog, IoT, and hybrid platforms. So, we evaluated 27 articles regarding the usage of the proposed framework, deployed methods, and applications, noting the advantages, drawbacks, and the applied dataset and screening the security mechanism and the presence of the Transfer Learning (TL) method. As a result, it was proved that most recent research (about 43%) used the IoT platform as the environment for the proposed architecture, and most of the studies (about 46%) were done in 2021. In addition, the most popular utilized DL algorithm was the Convolutional Neural Network (CNN), with a percentage of 19.4%. Hence, despite how technology changes, delivering appropriate therapy for patients is the primary aim of healthcare-associated departments. Therefore, further studies are recommended to develop more functional architectures based on DL and distributed environments and better evaluate the present healthcare data analysis models.Review Citation Count: 1Blockchain Systems in Embedded Internet of Things: Systematic Literature Review, Challenges Analysis, and Future Direction Suggestions(Mdpi, 2022) Darbandi, Mehdi; Al-Khafaji, Hamza Mohammed Ridha; Nasab, Seyed Hamid Hosseini; AlHamad, Ahmad Qasim Mohammad; Ergashevich, Beknazarov Zafarjon; Navimipour, Nima JafariInternet of Things (IoT) environments can extensively use embedded devices. Without the participation of consumers; tiny IoT devices will function and interact with one another, but their operations must be reliable and secure from various threats. The introduction of cutting-edge data analytics methods for linked IoT devices, including blockchain, may lower costs and boost the use of cloud platforms. In a peer-to-peer network such as blockchain, no one has to be trusted because each peer is in charge of their task, and there is no central server. Because blockchain is tamper-proof, it is connected to IoT to increase security. However, the technology is still developing and faces many challenges, such as power consumption and execution time. This article discusses blockchain technology and embedded devices in distant areas where IoT devices may encounter network shortages and possible cyber threats. This study aims to examine existing research while also outlining prospective areas for future work to use blockchains in smart settings. Finally, the efficiency of the blockchain is evaluated through performance parameters, such as latency, throughput, storage, and bandwidth. The obtained results showed that blockchain technology provides security and privacy for the IoT.Review Citation Count: 0A deep analysis of nature-inspired and meta-heuristic algorithms for designing intrusion detection systems in cloud/edge and IoT: state-of-the-art techniques, challenges, and future directions(Springer, 2024) Hu, Wengui; Cao, Qingsong; Darbandi, Mehdi; Navimipour, Nima JafariThe number of cloud-, edge-, and Internet of Things (IoT)-based applications that produce sensitive and personal data has rapidly increased in recent years. The IoT is a new model that integrates physical objects and the Internet and has become one of the principal technological evolutions of computing. Cloud computing is a paradigm for centralized computing that gathers resources in one place and makes them available to consumers via the Internet. Despite the vast array of resources that cloud computing offers, real-time mobile applications might not find it acceptable because it is typically located far from users. However, in applications where low latency and high dependability are required, edge computing-which disperses resources to the network edge-is becoming more and more popular. Though it has less processing power than traditional cloud computing, edge computing offers resources in a decentralized way that can react to customers' needs more quickly. There has been a sharp increase in attackers stealing data from these applications since the data is so sensitive. Thus, a powerful Intrusion Detection System (IDS) that can identify intruders is required. IDS are essential for the cybersecurity of the IoT, cloud, and edge architectures. Investigators have mostly embraced the use of deep learning algorithms as a means of protecting the IoT environment. However, these techniques have some issues with computational complexity, long processing times, and poor precision. Feature selection approaches can be utilized to overcome these problems. Optimization methods, including bio-inspired algorithms, are applied as feature selection approaches to enhance the classification accuracy of IDS systems. Based on the cited sources, it appears that no study has looked into these difficulties in depth. This research thoroughly analyzes the current literature on intrusion detection and using nature-inspired algorithms to safeguard IoT and cloud/edge settings. This article examines pertinent analyses and surveys on the aforementioned subjects, dangers, and outlooks. It also examines many frequently used algorithms in the development of IDSs used in IoT security. The findings demonstrate their efficiency in addressing IoT and cloud/edge ecosystem security issues. Moreover, it has been shown that the methods put out in the literature might improve IDS security and dependability in terms of precision and execution speed.Article Citation Count: 0An Energy-Aware Load Balancing Method for IoT-Based Smart Recycling Machines Using an Artificial Chemical Reaction Optimization Algorithm(Mdpi, 2023) Milan, Sara Tabaghchi; Darbandi, Mehdi; Navimipour, Nima Jafari; Yalcin, SenayRecycling is very important for a sustainable and clean environment. Developed and developing countries are both facing the problem of waste management and recycling issues. On the other hand, the Internet of Things (IoT) is a famous and applicable infrastructure used to provide connection between physical devices. It is an important technology that has been researched and implemented in recent years that promises to positively influence several industries, including recycling and trash management. The impact of the IoT on recycling and waste management is examined using standard operating practices in recycling. Recycling facilities, for instance, can use IoT to manage and keep an eye on the recycling situation in various places while allocating the logistics for transportation and distribution processes to minimize recycling costs and lead times. So, companies can use historical patterns to track usage trends in their service regions, assess their accessibility to gather resources, and arrange their activities accordingly. Additionally, energy is a significant aspect of the IoT since several devices will be linked to the internet, and the devices, sensors, nodes, and objects are all energy-restricted. Because the devices are constrained by their nature, the load-balancing protocol is crucial in an IoT ecosystem. Due to the importance of this issue, this study presents an energy-aware load-balancing method for IoT-based smart recycling machines using an artificial chemical reaction optimization algorithm. The experimental results indicated that the proposed solution could achieve excellent performance. According to the obtained results, the imbalance degree (5.44%), energy consumption (11.38%), and delay time (9.05%) were reduced using the proposed method.Article Citation Count: 1A GSO-based multi-objective technique for performance optimization of blockchain-based industrial Internet of things(Wiley, 2024) Zanbouri, Kouros; Darbandi, Mehdi; Nassr, Mohammad; Heidari, Arash; Navimipour, Nima Jafari; Yalcin, SenayThe latest developments in the industrial Internet of things (IIoT) have opened up a collection of possibilities for many industries. To solve the massive IIoT data security and efficiency problems, a potential approach is considered to satisfy the main needs of IIoT, such as high throughput, high security, and high efficiency, which is named blockchain. The blockchain mechanism is considered a significant approach to boosting data protection and performance. In the quest to amplify the capabilities of blockchain-based IIoT, a pivotal role is accorded to the Glowworm Swarm Optimization (GSO) algorithm. Inspired by the collaborative brilliance of glowworms in nature, the GSO algorithm offers a unique approach to harmonizing these conflicting aims. This paper proposes a new approach to improve the performance optimization of blockchain-based IIoT using the GSO algorithm due to the blockchain's contradictory objectives. The proposed blockchain-based IIoT system using the GSO algorithm addresses scalability challenges typically associated with blockchain technology by efficiently managing interactions among nodes and dynamically adapting to network demands. The GSO algorithm optimizes the allocation of resources and decision-making, reducing inefficiencies and bottlenecks. The method demonstrates considerable performance improvements through extensive simulations compared to traditional algorithms, offering a more scalable and efficient solution for industrial applications in the context of the IIoT. The extensive simulation and computational study have shown that the proposed method using GSO considerably improves the objective function and blockchain-based IIoT systems' performance compared to traditional algorithms. It provides more efficient and secure systems for industries and corporations. We introduced a blockchain-based IIoT using a glowworm swarm optimization algorithm motivated by glowworms' behavior, movements' probability toward each other, and luciferin quantity. The proposed approach significantly improves four-way trade-offs such as scalability, decentralization, cost, and latency. imageArticle Citation Count: 0The Management of IoT-Based Organizational and Industrial Digitalization Using Machine Learning Methods(Mdpi, 2023) Xu, Aoqi; Darbandi, Mehdi; Javaheri, Danial; Navimipour, Nima Jafari; Yalcin, Senay; Salameh, Anas A.Recently, the widespread adoption of the Internet of Things (IoT) model has led to the development of intelligent and sustainable industries that support the economic security of modern societies. These industries can offer their participants a higher standard of living and working services via digitalization. The IoT also includes ubiquitous technology for extracting context information to deliver valuable services to customers. With the growth of connected things, the related designs often suffer from high latency and network overheads, resulting in unresponsiveness. The continuous transmission of enormous amounts of sensor data from IoT nodes is problematic because IoT-based sensor nodes are highly energy-constrained. Recently, the research community in the field of IoT and digitalization has labored to build efficient platforms using machine learning (ML) algorithms. ML models that run directly on edge devices are intensely interesting in the context of IoT applications. The use of intelligence ML algorithms in the IoT can automate training, learning, and problem-solving while enabling decision-making based on past data. Therefore, the primary aim of this research is to provide a systematic procedure to review the state-of-the-art on this scope and offer a roadmap for future studies; thus, a structure is introduced for industry sustainability, based on ML methods. The publications were reviewed using a systematic approach that divided the papers into four categories: reinforcement learning, semi-supervised learning, unsupervised learning, and supervised learning. The results showed that ML models could manage IoT-enabled industries efficiently and provide better results compared to other models, with significant differences in learning time and performance. The study findings are considered from a variety of angles concerning the industrial sector's capacity management of the new elements of Industry 4.0 by combining the industry IoT and ML. Additionally, unique and relevant instructions are provided for the designers of expert intelligent production systems in industrial domains.Article Citation Count: 0A new cloud-based method for composition of healthcare services using deep reinforcement learning and Kalman filtering(Pergamon-elsevier Science Ltd, 2024) Zhong, Chongzhou; Darbandi, Mehdi; Nassr, Mohammad; Latifian, Ahmad; Hosseinzadeh, Mehdi; Navimipour, Nima JafariHealthcare has significantly contributed to the well-being of individuals around the globe; nevertheless, further benefits could be derived from a more streamlined healthcare system without incurring additional costs. Recently, the main attributes of cloud computing, such as on-demand service, high scalability, and virtualization, have brought many benefits across many areas, especially in medical services. It is considered an important element in healthcare services, enhancing the performance and efficacy of the services. The current state of the healthcare industry requires the supply of healthcare products and services, increasing its viability for everyone involved. Developing new approaches for discovering and selecting healthcare services in the cloud has become more critical due to the rising popularity of these kinds of services. As a result of the diverse array of healthcare services, service composition enables the execution of intricate operations by integrating multiple services' functionalities into a single procedure. However, many methods in this field encounter several issues, such as high energy consumption, cost, and response time. This article introduces a novel layered method for selecting and evaluating healthcare services to find optimal service selection and composition solutions based on Deep Reinforcement Learning (Deep RL), Kalman filtering, and repeated training, addressing the aforementioned issues. The results revealed that the proposed method has achieved acceptable results in terms of availability, reliability, energy consumption, and response time when compared to other methods.Article Citation Count: 0A new energy-efficient design for quantum-based multiplier for nano-scale devices in internet of things(Pergamon-elsevier Science Ltd, 2024) Ahmadpour, Seyed-Sajad; Noorallahzadeh, Mojtaba; Al-Khafaji, Hamza Mohammed Ridha; Darbandi, Mehdi; Navimipour, Nima Jafari; Javadi, Bahman; Yalcin, SenayAn enormous variety of items and things are connected via wired or wireless connections and specific addressing schemes, which is known as the Internet of Things (IoT). However, IoT devices that adopt aggressive duty-cycling for high power efficiency and prolonged lifespan necessitate the incorporation of ultra-low power consumption always-on blocks. The multiplier plays a crucial role in enhancing the capabilities of low-power IoT devices, particularly those operating with energy-efficient batteries that offer extended battery life. The previous multipliers have a struggling speed, enormous occupied area, and high energy consumption; therefore, all prior flaws must be fixed by implementing it in a suitable technology, like the quantum computing. Therefore, this paper examines the ultra-low power circuit for nano-scale IoT platforms. It also suggests novel quantum-based adders for multiplier structure. The proposed designs are simulated using the QCADesignerE 2.2 tool by focusing on energy-efficient and occupied areas for miniaturizing IoT systems.Article Citation Count: 15The Personal Health Applications of Machine Learning Techniques in the Internet of Behaviors(Mdpi, 2023) Jafari Navimipour, Nima; Heidari, Arash; Darbandi, Mehdi; Yazdani, Yalda; Jafari Navimipour, Nima; Esmaeilpour, Mansour; Sheykhi, FarshidWith the swift pace of the development of artificial intelligence (AI) in diverse spheres, the medical and healthcare fields are utilizing machine learning (ML) methodologies in numerous inventive ways. ML techniques have outstripped formerly state-of-the-art techniques in medical and healthcare practices, yielding faster and more precise outcomes. Healthcare practitioners are increasingly drawn to this technology in their initiatives relating to the Internet of Behavior (IoB). This area of research scrutinizes the rationales, approaches, and timing of human technology adoption, encompassing the domains of the Internet of Things (IoT), behavioral science, and edge analytics. The significance of ML in medical and healthcare applications based on the IoB stems from its ability to analyze and interpret copious amounts of complex data instantly, providing innovative perspectives that can enhance healthcare outcomes and boost the efficiency of IoB-based medical and healthcare procedures and thus aid in diagnoses, treatment protocols, and clinical decision making. As a result of the inadequacy of thorough inquiry into the employment of ML-based approaches in the context of using IoB for healthcare applications, we conducted a study on this subject matter, introducing a novel taxonomy that underscores the need to employ each ML method distinctively. With this objective in mind, we have classified the cutting-edge ML solutions for IoB-based healthcare challenges into five categories, which are convolutional neural networks (CNNs), recurrent neural networks (RNNs), deep neural networks (DNNs), multilayer perceptions (MLPs), and hybrid methods. In order to delve deeper, we conducted a systematic literature review (SLR) that examined critical factors, such as the primary concept, benefits, drawbacks, simulation environment, and datasets. Subsequently, we highlighted pioneering studies on ML methodologies for IoB-based medical issues. Moreover, several challenges related to the implementation of ML in healthcare and medicine have been tackled, thereby gradually fostering further research endeavors that can enhance IoB-based health and medical studies. Our findings indicated that Tensorflow was the most commonly utilized simulation setting, accounting for 24% of the proposed methodologies by researchers. Additionally, accuracy was deemed to be the most crucial parameter in the majority of the examined papers.Article Citation Count: 1A reliable method for data aggregation on the industrial internet of things using a hybrid optimization algorithm and density correlation degree(Springer, 2024) Heidari, Arash; Shishehlou, Houshang; Darbandi, Mehdi; Navimipour, Nima Jafari; Yalcin, SenayThe Internet of Things (IoT) is a new information technology sector in which each device may receive and distribute data across a network. Industrial IoT (IIoT) and related areas, such as Industrial Wireless Networks (IWNs), big data, and cloud computing, have made significant strides recently. Using IIoT requires a reliable and effective data collection system, such as a spanning tree. Many previous spanning tree algorithms ignore failure and mobility. In such cases, the spanning tree is broken, making data delivery to the base station difficult. This study proposes an algorithm to construct an optimal spanning tree by combining an artificial bee colony, genetic operators, and density correlation degree to make suitable trees. The trees' fitness is measured using hop count distances of the devices from the base station, residual energy of the devices, and their mobility probabilities in this technique. The simulation outcomes highlight the enhanced data collection reliability achieved by the suggested algorithm when compared to established methods like the Reliable Spanning Tree (RST) construction algorithm in IIoT and the Hop Count Distance (HCD) based construction algorithm. This proposed algorithm shows improved reliability across diverse node numbers, considering key parameters including reliability, energy consumption, displacement probability, and distance.