Browsing by Author "Mirza, Fuat Kaan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0Decoding Compositional Complexity: Identifying Composers Using a Model Fusion-Based Approach With Nonlinear Signal Processing and Chaotic Dynamics(Pergamon-elsevier Science Ltd, 2024) Mirza, Fuat Kaan; Baykas, Tuncer; Hekimoglu, Mustafa; Pekcan, Onder; Tuncay, Gonul PacaciMusic, a universal medium that effortlessly transcends the confines of language and culture, serves as a vessel for the distinctive expression of a composer's ingenuity, particularly palpable through the elaborate symphony of melodies, harmonies, and rhythms. This phenomenon is acutely observable in the realm of Turkish Classical Music, where the identification of individual composers poses a formidable challenge due to a confluence of diverse stylistic expressions and sophisticated techniques. Shaped by centuries of cultural interchanges, this genre is celebrated for its convoluted rhythmic frameworks and deep melodic modes, often exhibiting fractal characteristics that compound the complexity of composer classification based on mere audio signals. In response to these complexities, this study introduces an advanced analytical paradigm that amalgamates Multi-resolution analysis, spectral entropy assessments, and a spectrum of multidimensional chaotic and statistical descriptors. By invoking chaos theory, the research delineates distinct patterns and features inherent to musical compositions, subsequently deploying these discoveries for composer categorization. Employing a model fusion-based strategy, the approach utilizes esteemed base estimators for section-level probabilistic determinations, subsequently amalgamated at the song level through a Long Short-Term Memory (LSTM) neural network model to classify a corpus of 380 compositions from 15 distinct composers. The results of this study not only highlight the efficacy of chaos-based approaches in Musical Information Retrieval but also provide a nuanced understanding of the unique characteristics of Turkish Classical Music, thus advancing the boundaries of how musicological data is scrutinized and conceptualized within scholarly discourse.Article Citation Count: 0Residual Lstm Neural Network for Time Dependent Consecutive Pitch String Recognition From Spectrograms: a Study on Turkish Classical Music Makams(Springer, 2023) Mirza, Fuat Kaan; Gursoy, Ahmet Fazil; Baykas, Tuncer; Hekimoglu, Mustafa; Pekcan, OnderTurkish classical music, characterized by 'makam', specific melodic configurations delineated by sequential pitches and intervals, is rich in cultural significance and poses a considerable challenge in identifying a musical piece's particular makam. This identification complexity remains an issue even for experienced musical experts, emphasizing the need for automated and accurate classification techniques. In response, we introduce a residual LSTM neural network model that classifies makams by leveraging the distinct sequential pitch patterns discerned within various audio segments over spectrogram-based inputs. This model's design uniquely merges the spatial capabilities of two-dimensional convolutional layers with the temporal understanding of one-dimensional convolutional and LSTM mechanisms embedded within a residual framework. Such an integrated approach allows for detailed temporal analysis of shifting frequencies, as revealed in logarithmically scaled spectrograms, and is adept at recognizing consecutive pitch patterns within segments. Employing stratified cross-validation on a comprehensive dataset encompassing 1154 pieces spanning 15 unique makams, we found that our model demonstrated an accuracy of 95.60% for a subset of 9 makams and 89.09% for all 15 makams. Our approach demonstrated consistent precision even when distinguishing makam pairs known for their closely related pitch sequences. To further validate our model's prowess, we conducted benchmark tests against established methodologies found in current literature, providing a comparative assessment of our proposed workflow's abilities.