Browsing by Author "Sarman, Deniz"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0Axial, planar-diagonal, body-diagonal fields on the cubic-spin spin glass in d=3: A plethora of ordered phases under finite fields(Amer Physical Soc, 2024) Artun, E. Can; Sarman, Deniz; Berker, A. NihatA nematic phase, previously seen in the d = 3 classical Heisenberg spin-glass system, occurs in the n-component cubic-spin spin-glass system, between the low-temperature spin-glass phase and the hightemperature disordered phase, for number of spin components n >= 3, in spatial dimension d = 3, thus constituting a liquid-crystal phase in a dirty (quenched-disordered) magnet. Furthermore, under application of a variety of uniform magnetic fields, a veritable plethora of phases is found. Under uniform magnetic fields, 17 different phases and two spin-glass phase diagram topologies (meaning the occurrences and relative positions of the many phases), qualitatively different from the conventional spin-glass phase diagram topology, are seen. The chaotic rescaling behaviors and their Lyapunov exponents are calculated in each of these spin-glass phase diagram topologies. These results are obtained from renormalization-group calculations that are exact on the d = 3 hierarchical lattice and, equivalently, approximate on the cubic spatial lattice. Axial, planar-diagonal, or body-diagonal finite-strength uniform fields are applied to n = 2 and 3 component cubic-spin spin-glass systems in d=3.Article Citation Count: 0Nematic Phase of the N-Component Cubic-Spin Spin Glass in D=3: Liquid-Crystal Phase in a Dirty Magnet(Elsevier, 2024) Artun, E. Can; Sarman, Deniz; Berker, A. NihatA nematic phase, previously seen in the n= 3 classical Heisenberg spin-glass system, occurs in the n-component cubic-spin spin-glass system, between the low-temperature spin-glass phase and the-high temperature disordered phase, for number of components n >= 3, in spatial dimension n= 3, thus constituting a liquid-crystal phase in a dirty (quenched-disordered) magnet. This result is obtained from renormalization-group calculations that are exact on the hierarchical lattice and, equivalently, approximate on the cubic spatial lattice. The nematic phase completely intervenes between the spin-glass phase and the disordered phase. The Lyapunov exponents of the spin-glass chaos are calculated from n= 1 up to n= 12 and show odd-even oscillations with respect to n.