Evaluation of Noise Distributions for Additive and Multiplicative Smart Meter Data Obfuscation

dc.authoridAnpalagan, Alagan/0000-0002-6646-6052
dc.contributor.authorErküçük, Serhat
dc.contributor.authorErkucuk, Serhat
dc.contributor.authorAnpalagan, Alagan
dc.contributor.authorVenkatesh, Bala
dc.date.accessioned2023-10-19T15:11:53Z
dc.date.available2023-10-19T15:11:53Z
dc.date.issued2022
dc.department-temp[Khwaja, Ahmed S.; Anpalagan, Alagan; Venkatesh, Bala] Ryerson Univ, Dept Elect Comp & Biomed Engn, Toronto, ON M5B 2K3, Canada; [Erkucuk, Serhat] Kadir Has Univ, Dept Elect Elect Engn, TR-34083 Istanbul, Turkeyen_US
dc.description.abstractIn this paper, we compare and analyze light-weight approaches for instantaneous smart meter (SM) data obfuscation from a group of consumers. In the literature, the common approach is to use additive Gaussian noise based SM data obfuscation. In order to investigate the effects of different approaches, we consider Gaussian, Rayleigh, generalized Gaussian and chi-square distributions to achieve either additive or multiplicative data obfuscation. For each type of obfuscation approach, we calculate the required parameters to achieve obfuscation such that 50% of the obfuscated data fall outside an interval equalling twice the mean of the instantaneous SM measurements. We also calculate the minimum number of SMs required to estimate the mean of the actual SM measurements, such that the estimate varies within only 0.5% of the actual mean with a 99.5% probability. Simulation results are used to verify the calculations, and it is shown that multiplicative Rayleigh and generalized Gaussian noise require the least number of SMs, which is 90% less than the traditional approach of additive Gaussian noise-based SM data obfuscation.en_US
dc.identifier.citation3
dc.identifier.doi10.1109/ACCESS.2022.3157390en_US
dc.identifier.endpage27735en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85126295736en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage27717en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2022.3157390
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5267
dc.identifier.volume10en_US
dc.identifier.wosWOS:000769956700001en_US
dc.identifier.wosqualityQ2
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDifferential PrivacyEn_Us
dc.subjectData AggregationEn_Us
dc.subjectSchemesEn_Us
dc.subjectAdditivesen_US
dc.subjectSecureEn_Us
dc.subjectPrivacyen_US
dc.subjectData privacyen_US
dc.subjectSmart metersen_US
dc.subjectUsageEn_Us
dc.subjectGaussian noiseen_US
dc.subjectGaussian distributionen_US
dc.subjectDifferential Privacy
dc.subjectLicensesen_US
dc.subjectData Aggregation
dc.subjectSmart meteren_US
dc.subjectSchemes
dc.subjectdata obfuscationen_US
dc.subjectSecure
dc.subjectadditive noiseen_US
dc.subjectUsage
dc.subjectmultiplicative noiseen_US
dc.titleEvaluation of Noise Distributions for Additive and Multiplicative Smart Meter Data Obfuscationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery440e977b-46c6-40d4-b970-99b1e357c998

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5267.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text