Evaluation of Noise Distributions for Additive and Multiplicative Smart Meter Data Obfuscation

dc.authorid Anpalagan, Alagan/0000-0002-6646-6052
dc.contributor.author Erküçük, Serhat
dc.contributor.author Erkucuk, Serhat
dc.contributor.author Anpalagan, Alagan
dc.contributor.author Venkatesh, Bala
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2023-10-19T15:11:53Z
dc.date.available 2023-10-19T15:11:53Z
dc.date.issued 2022
dc.department-temp [Khwaja, Ahmed S.; Anpalagan, Alagan; Venkatesh, Bala] Ryerson Univ, Dept Elect Comp & Biomed Engn, Toronto, ON M5B 2K3, Canada; [Erkucuk, Serhat] Kadir Has Univ, Dept Elect Elect Engn, TR-34083 Istanbul, Turkey en_US
dc.description.abstract In this paper, we compare and analyze light-weight approaches for instantaneous smart meter (SM) data obfuscation from a group of consumers. In the literature, the common approach is to use additive Gaussian noise based SM data obfuscation. In order to investigate the effects of different approaches, we consider Gaussian, Rayleigh, generalized Gaussian and chi-square distributions to achieve either additive or multiplicative data obfuscation. For each type of obfuscation approach, we calculate the required parameters to achieve obfuscation such that 50% of the obfuscated data fall outside an interval equalling twice the mean of the instantaneous SM measurements. We also calculate the minimum number of SMs required to estimate the mean of the actual SM measurements, such that the estimate varies within only 0.5% of the actual mean with a 99.5% probability. Simulation results are used to verify the calculations, and it is shown that multiplicative Rayleigh and generalized Gaussian noise require the least number of SMs, which is 90% less than the traditional approach of additive Gaussian noise-based SM data obfuscation. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1109/ACCESS.2022.3157390 en_US
dc.identifier.endpage 27735 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85126295736 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 27717 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2022.3157390
dc.identifier.uri https://hdl.handle.net/20.500.12469/5267
dc.identifier.volume 10 en_US
dc.identifier.wos WOS:000769956700001 en_US
dc.identifier.wosquality Q2
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof Ieee Access en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Differential Privacy En_Us
dc.subject Data Aggregation En_Us
dc.subject Schemes En_Us
dc.subject Additives en_US
dc.subject Secure En_Us
dc.subject Privacy en_US
dc.subject Data privacy en_US
dc.subject Smart meters en_US
dc.subject Usage En_Us
dc.subject Gaussian noise en_US
dc.subject Gaussian distribution en_US
dc.subject Differential Privacy
dc.subject Licenses en_US
dc.subject Data Aggregation
dc.subject Smart meter en_US
dc.subject Schemes
dc.subject data obfuscation en_US
dc.subject Secure
dc.subject additive noise en_US
dc.subject Usage
dc.subject multiplicative noise en_US
dc.title Evaluation of Noise Distributions for Additive and Multiplicative Smart Meter Data Obfuscation en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery 440e977b-46c6-40d4-b970-99b1e357c998
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5267.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text