Extended Hybridizable Discontinuous Galerkin (x-Hdg) Method for Linear Convection-Diffusion Equations on Unfitted Domains

dc.authorid GURKAN, Ceren/0000-0002-1240-5801
dc.authorid Ahmad, Haroon/0000-0002-3986-8013
dc.authorscopusid 58420418700
dc.authorscopusid 56709522500
dc.authorwosid Ahmad, Haroon/AAB-6312-2022
dc.contributor.author Ahmad, Haroon
dc.contributor.author Gürkan, Ceren
dc.contributor.author Gurkan, Ceren
dc.contributor.other Civil Engineering
dc.date.accessioned 2024-06-23T21:37:22Z
dc.date.available 2024-06-23T21:37:22Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Ahmad, Haroon; Gurkan, Ceren] Kadir Has Univ, Dept Civil Engn, TR-34083 Istanbul, Turkiye en_US
dc.description GURKAN, Ceren/0000-0002-1240-5801; Ahmad, Haroon/0000-0002-3986-8013 en_US
dc.description.abstract In this work, we propose a novel strategy for the numerical solution of linear convection diffusion equation (CDE) over unfitted domains. In the proposed numerical scheme, strategies from high order Hybridized Discontinuous Galerkin method and eXtended Finite Element method are combined with the level set definition of the boundaries. The proposed scheme and hence, is named as eXtended Hybridizable Discontinuous Galerkin (XHDG) method. In this regard, the Hybridizable Discontinuous Galerkin (HDG) method is eXtended to the unfitted domains; i.e., the computational mesh does not need to fit to the domain boundary; instead, the boundary is defined by a level set function and cuts through the background mesh arbitrarily. The original unknown structure of HDG and its hybrid nature ensuring the local conservation of fluxes is kept, while developing a modified bilinear form for the elements cut by the boundary. At every cut element, an auxiliary nodal trace variable on the boundary is introduced, which is eliminated afterwards while imposing the boundary conditions. Both stationary and time dependent CDEs are studied over a range of flow regimes from diffusion to convection dominated; using high order (p <= 4) XHDG through benchmark numerical examples over arbitrary unfitted domains. Results proved that XHDG inherits optimal (p + 1) and super (p + 2) convergence properties of HDG while removing the fitting mesh restriction. en_US
dc.description.sponsorship The Scientific and Technological Research Council of Turkiye (TUBITAK); [121M947] en_US
dc.description.sponsorship This work is supported by The Scientific and Technological Research Council of Turkiye (TUBITAK) , Career Development Program (CAREER) , project no: 121M947. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.jcp.2023.112666
dc.identifier.issn 0021-9991
dc.identifier.issn 1090-2716
dc.identifier.scopus 2-s2.0-85178335623
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.jcp.2023.112666
dc.identifier.uri https://hdl.handle.net/20.500.12469/5716
dc.identifier.volume 498 en_US
dc.identifier.wos WOS:001129821900001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Advection-diffusion en_US
dc.subject Cut en_US
dc.subject Unfitted en_US
dc.subject Hybridizable discontinuous Galerkin (HDG) en_US
dc.subject High-order en_US
dc.subject Level-set en_US
dc.title Extended Hybridizable Discontinuous Galerkin (x-Hdg) Method for Linear Convection-Diffusion Equations on Unfitted Domains en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 0e95cb67-6dd8-43e6-b6b0-990755ef2ed6
relation.isAuthorOfPublication.latestForDiscovery 0e95cb67-6dd8-43e6-b6b0-990755ef2ed6
relation.isOrgUnitOfPublication 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a
relation.isOrgUnitOfPublication.latestForDiscovery 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a

Files