The Multicolored Graph Realization Problem
dc.authorscopusid | 7401603758 | |
dc.authorscopusid | 55630908700 | |
dc.authorscopusid | 56211714900 | |
dc.authorscopusid | 7006385756 | |
dc.contributor.author | Díaz, J. | |
dc.contributor.author | Diner, Ö.Y. | |
dc.contributor.author | Serna, M. | |
dc.contributor.author | Serra, O. | |
dc.date.accessioned | 2023-10-19T15:05:27Z | |
dc.date.available | 2023-10-19T15:05:27Z | |
dc.date.issued | 2022 | |
dc.department-temp | Díaz, J., ALBCOM Research Group, Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Diner, Ö.Y., Computer Engineering Department, Kadir Has University, Istanbul, Turkey, Mathematics Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Serna, M., ALBCOM Research Group, Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Serra, O., Mathematics Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain | en_US |
dc.description.abstract | We introduce the multicolored graph realization problem (MGR). The input to this problem is a colored graph (G,?), i.e., a graph G together with a coloring ? on its vertices. We associate each colored graph (G,?) with a cluster graph (G?) in which, after collapsing all vertices with the same color to a node, we remove multiple edges and self-loops. A set of vertices S is multicolored when S has exactly one vertex from each color class. The MGR problem is to decide whether there is a multicolored set S so that, after identifying each vertex in S with its color class, G[S] coincides with G?. The MGR problem is related to the well-known class of generalized network problems, most of which are NP-hard, like the generalized Minimum Spanning Tree problem. The MGR is a generalization of the multicolored clique problem, which is known to be W[1]-hard when parameterized by the number of colors. Thus, MGR remains W[1]-hard, when parameterized by the size of the cluster graph. These results imply that the MGR problem is W[1]-hard when parameterized by any graph parameter on G?, among which lies treewidth. Consequently, we look at the instances of the problem in which both the number of color classes and the treewidth of G? are unbounded. We consider three natural such graph classes: chordal graphs, convex bipartite graphs and 2-dimensional grid graphs. We show that MGR is NP-complete when G? is either chordal, biconvex bipartite, complete bipartite or a 2-dimensional grid. Our reductions show that the problem remains hard even when the maximum number of vertices in a color class is 3. In the case of the grid, the hardness holds even for graphs with bounded degree. We provide a complexity dichotomy with respect to cluster size. © 2022 The Author(s) | en_US |
dc.description.sponsorship | 2018-BAP-08, PID2020-113082GB-I00; BIDEB 2219-1059B191802095; Agència de Gestió d'Ajuts Universitaris i de Recerca, AGAUR: 2017-SGR-786; Agencia Estatal de Investigación, AEI: PID2020-112581GB-C21 | en_US |
dc.description.sponsorship | We thank the anonymous referees for their careful reading and helpful suggestions. J. Díaz and M. Serna are partially supported by funds from the Spanish Agencia Estatal de Investigación under grant PID2020-112581GB-C21 (MOTION), and from AGAUR under grant 2017-SGR-786 (ALBCOM). Ö. Y. Diner is partially supported by the Scientific and Technological Research Council Tübitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra is supported by the Spanish Agencia Estatal de Investigación under grant PID2020-113082GB-I00 . | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.dam.2022.06.031 | en_US |
dc.identifier.issn | 0166-218X | |
dc.identifier.scopus | 2-s2.0-85133340021 | en_US |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.dam.2022.06.031 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/4902 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Yaşar Diner, Öznur | |
dc.khas | 20231019-Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Discrete Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Convex bipartite graphs | en_US |
dc.subject | Generalized combinatorial problems | en_US |
dc.subject | Multicolored realization problem | en_US |
dc.subject | Parameterized complexity | en_US |
dc.subject | Complex networks | en_US |
dc.subject | Graph theory | en_US |
dc.subject | Graphic methods | en_US |
dc.subject | Parameterization | en_US |
dc.subject | Bipartite graphs | en_US |
dc.subject | Combinatorial problem | en_US |
dc.subject | Convex bipartite graph | en_US |
dc.subject | Convex-bipartite | en_US |
dc.subject | Generalized combinatorial problem | en_US |
dc.subject | Graph G | en_US |
dc.subject | Multicolored realization problem | en_US |
dc.subject | Parameterized | en_US |
dc.subject | Parameterized complexity | en_US |
dc.subject | Realization problems | en_US |
dc.subject | Color | en_US |
dc.title | The Multicolored Graph Realization Problem | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 84ac79d3-823a-4abf-9b15-e1383ec8a9f5 | |
relation.isAuthorOfPublication.latestForDiscovery | 84ac79d3-823a-4abf-9b15-e1383ec8a9f5 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 4902.pdf
- Size:
- 452.31 KB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text