The Multicolored Graph Realization Problem

dc.authorscopusid7401603758
dc.authorscopusid55630908700
dc.authorscopusid56211714900
dc.authorscopusid7006385756
dc.contributor.authorDíaz, J.
dc.contributor.authorDiner, Ö.Y.
dc.contributor.authorSerna, M.
dc.contributor.authorSerra, O.
dc.date.accessioned2023-10-19T15:05:27Z
dc.date.available2023-10-19T15:05:27Z
dc.date.issued2022
dc.department-tempDíaz, J., ALBCOM Research Group, Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Diner, Ö.Y., Computer Engineering Department, Kadir Has University, Istanbul, Turkey, Mathematics Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Serna, M., ALBCOM Research Group, Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Serra, O., Mathematics Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spainen_US
dc.description.abstractWe introduce the multicolored graph realization problem (MGR). The input to this problem is a colored graph (G,?), i.e., a graph G together with a coloring ? on its vertices. We associate each colored graph (G,?) with a cluster graph (G?) in which, after collapsing all vertices with the same color to a node, we remove multiple edges and self-loops. A set of vertices S is multicolored when S has exactly one vertex from each color class. The MGR problem is to decide whether there is a multicolored set S so that, after identifying each vertex in S with its color class, G[S] coincides with G?. The MGR problem is related to the well-known class of generalized network problems, most of which are NP-hard, like the generalized Minimum Spanning Tree problem. The MGR is a generalization of the multicolored clique problem, which is known to be W[1]-hard when parameterized by the number of colors. Thus, MGR remains W[1]-hard, when parameterized by the size of the cluster graph. These results imply that the MGR problem is W[1]-hard when parameterized by any graph parameter on G?, among which lies treewidth. Consequently, we look at the instances of the problem in which both the number of color classes and the treewidth of G? are unbounded. We consider three natural such graph classes: chordal graphs, convex bipartite graphs and 2-dimensional grid graphs. We show that MGR is NP-complete when G? is either chordal, biconvex bipartite, complete bipartite or a 2-dimensional grid. Our reductions show that the problem remains hard even when the maximum number of vertices in a color class is 3. In the case of the grid, the hardness holds even for graphs with bounded degree. We provide a complexity dichotomy with respect to cluster size. © 2022 The Author(s)en_US
dc.description.sponsorship2018-BAP-08, PID2020-113082GB-I00; BIDEB 2219-1059B191802095; Agència de Gestió d'Ajuts Universitaris i de Recerca, AGAUR: 2017-SGR-786; Agencia Estatal de Investigación, AEI: PID2020-112581GB-C21en_US
dc.description.sponsorshipWe thank the anonymous referees for their careful reading and helpful suggestions. J. Díaz and M. Serna are partially supported by funds from the Spanish Agencia Estatal de Investigación under grant PID2020-112581GB-C21 (MOTION), and from AGAUR under grant 2017-SGR-786 (ALBCOM). Ö. Y. Diner is partially supported by the Scientific and Technological Research Council Tübitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra is supported by the Spanish Agencia Estatal de Investigación under grant PID2020-113082GB-I00 .en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.dam.2022.06.031en_US
dc.identifier.issn0166-218X
dc.identifier.scopus2-s2.0-85133340021en_US
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.dam.2022.06.031
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4902
dc.identifier.wosqualityQ3
dc.institutionauthorYaşar Diner, Öznur
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofDiscrete Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvex bipartite graphsen_US
dc.subjectGeneralized combinatorial problemsen_US
dc.subjectMulticolored realization problemen_US
dc.subjectParameterized complexityen_US
dc.subjectComplex networksen_US
dc.subjectGraph theoryen_US
dc.subjectGraphic methodsen_US
dc.subjectParameterizationen_US
dc.subjectBipartite graphsen_US
dc.subjectCombinatorial problemen_US
dc.subjectConvex bipartite graphen_US
dc.subjectConvex-bipartiteen_US
dc.subjectGeneralized combinatorial problemen_US
dc.subjectGraph Gen_US
dc.subjectMulticolored realization problemen_US
dc.subjectParameterizeden_US
dc.subjectParameterized complexityen_US
dc.subjectRealization problemsen_US
dc.subjectColoren_US
dc.titleThe Multicolored Graph Realization Problemen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery84ac79d3-823a-4abf-9b15-e1383ec8a9f5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4902.pdf
Size:
452.31 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text