Transmitter Source Location Estimation Using Crowd Data

gdc.relation.journal Computers & Electrical Engineering en_US
dc.contributor.author Öğrenci, Arif Selçuk
dc.contributor.author Arsan, Taner
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:06:44Z
dc.date.available 2019-06-27T08:06:44Z
dc.date.issued 2018
dc.description.abstract The problem of transmitter source localization in a dense urban area has been investigated where a supervised learning approach utilizing neural networks has been adopted. The cellular phone network cells and signals have been used as the test bed where data are collected by means of a smart phone. Location and signal strength data are obtained by random navigation and this information is used to develop a learning system for cells with known base station location. The model is applied to data collected in other cells to predict their base station locations. Results are consistent and indicating a potential for effective use of this methodology. The performance increases by increasing the training set size. Several shortcomings and future research topics are discussed. (C) 2017 Elsevier Ltd. All rights reserved. en_US]
dc.identifier.citationcount 2
dc.identifier.doi 10.1016/j.compeleceng.2017.09.026 en_US
dc.identifier.issn 0045-7906 en_US
dc.identifier.issn 1879-0755 en_US
dc.identifier.issn 0045-7906
dc.identifier.issn 1879-0755
dc.identifier.scopus 2-s2.0-85030236432 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1225
dc.identifier.uri https://doi.org/10.1016/j.compeleceng.2017.09.026
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Computers & Electrical Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Source localization en_US
dc.subject Neural networks en_US
dc.subject Learning en_US
dc.subject Received signal strength en_US
dc.subject Nonlinear regression en_US
dc.title Transmitter Source Location Estimation Using Crowd Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Öğrenci, Arif Selçuk en_US
gdc.author.institutional Arsan, Taner
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 138
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 127 en_US
gdc.description.volume 66 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2762654817
gdc.identifier.wos WOS:000429760300011 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.1611131E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Nonlinear regression
gdc.oaire.keywords Learning
gdc.oaire.keywords Received signal strength
gdc.oaire.keywords Source localization
gdc.oaire.keywords Neural networks
gdc.oaire.popularity 3.576898E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.213
gdc.openalex.normalizedpercentile 0.53
gdc.opencitations.count 4
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 3
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files