Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition

dc.authorid Dong, Zhicheng/0000-0003-3415-7682
dc.authorid Liu, Xiaofeng/0000-0002-8185-1477
dc.authorwosid Wang, Haozhi/AGU-4577-2022
dc.authorwosid hong, xiaobin/E-7032-2012
dc.contributor.author Panayırcı, Erdal
dc.contributor.author Wang, Qing
dc.contributor.author Chen, Luyong
dc.contributor.author Fu, Guanyang
dc.contributor.author Liu, Xiaofeng
dc.contributor.author Dong, Zhicheng
dc.contributor.author Panayirci, Erdal
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2024-10-15T19:40:46Z
dc.date.available 2024-10-15T19:40:46Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Wang, Haozhi; Wang, Qing; Chen, Luyong; Fu, Guanyang; Liu, Xiaofeng; Dong, Zhicheng] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China; [Dong, Zhicheng] Tibet Univ, Sch Informat Sci & Technol, Lasha 850000, Tibet, Peoples R China; [Panayirci, Erdal] Kadir Has Univ, Dept Elect & Elect Engn, TR-34083 Istanbul, Turkiye en_US
dc.description Dong, Zhicheng/0000-0003-3415-7682; Liu, Xiaofeng/0000-0002-8185-1477 en_US
dc.description.abstract Intelligent electromagnetic signature recognition is one of the key technologies in Internet of Things (IoT) device connection, which can improve system security and speed up the authentication process. In practical scenarios, as the number of IoT devices increases, electromagnetic features, such as fingerprint and modulation signals also increase substantially. However, since intelligent recognition technology, such as automatic modulation classification (AMC), requires a large amount of labeled data to train the neural network classifier, it is challenging to collect so much labeled data. To address the performance degradation challenges with small training data, we propose an efficient semisupervised electromagnetic recognition framework to break the performance gap with the fully supervised learning scheme. This framework can fully use the unlabeled electromagnetic data collected during the authentication process for self-training to improve the classifier's performance. According to the idea of consistency regularization, we design a signal augmentation method and propose an ensemble pseudolabel design algorithm to improve confidence. Moreover, we perform a convex combination of electromagnetic features to smooth the model decision boundary while generalizing to unknown data distribution regions. Experimental results on the modulated data demonstrate the performance superiority of the proposed algorithm, i.e., use less than 5% of data with no more than 10% performance drop. en_US
dc.description.sponsorship National Natural Science Foundation of China en_US
dc.description.sponsorship No Statement Available en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/JIOT.2023.3295397
dc.identifier.endpage 3174 en_US
dc.identifier.issn 2327-4662
dc.identifier.issue 2 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 3161 en_US
dc.identifier.uri https://doi.org/10.1109/JIOT.2023.3295397
dc.identifier.uri https://hdl.handle.net/20.500.12469/6391
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:001153911600117
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convex combination en_US
dc.subject electromagnetic signature recognition en_US
dc.subject ensemble pseudolabel en_US
dc.subject semisupervised learning (SSL) en_US
dc.subject signal augmentation methods en_US
dc.title Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isAuthorOfPublication.latestForDiscovery 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files