Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition

dc.contributor.author Wang, Haozhi
dc.contributor.author Wang, Qing
dc.contributor.author Chen, Luyong
dc.contributor.author Fu, Guanyang
dc.contributor.author Liu, Xiaofeng
dc.contributor.author Dong, Zhicheng
dc.contributor.author Panayirci, Erdal
dc.date.accessioned 2024-10-15T19:40:46Z
dc.date.available 2024-10-15T19:40:46Z
dc.date.issued 2024
dc.description Dong, Zhicheng/0000-0003-3415-7682; Liu, Xiaofeng/0000-0002-8185-1477 en_US
dc.description.abstract Intelligent electromagnetic signature recognition is one of the key technologies in Internet of Things (IoT) device connection, which can improve system security and speed up the authentication process. In practical scenarios, as the number of IoT devices increases, electromagnetic features, such as fingerprint and modulation signals also increase substantially. However, since intelligent recognition technology, such as automatic modulation classification (AMC), requires a large amount of labeled data to train the neural network classifier, it is challenging to collect so much labeled data. To address the performance degradation challenges with small training data, we propose an efficient semisupervised electromagnetic recognition framework to break the performance gap with the fully supervised learning scheme. This framework can fully use the unlabeled electromagnetic data collected during the authentication process for self-training to improve the classifier's performance. According to the idea of consistency regularization, we design a signal augmentation method and propose an ensemble pseudolabel design algorithm to improve confidence. Moreover, we perform a convex combination of electromagnetic features to smooth the model decision boundary while generalizing to unknown data distribution regions. Experimental results on the modulated data demonstrate the performance superiority of the proposed algorithm, i.e., use less than 5% of data with no more than 10% performance drop. en_US
dc.description.sponsorship National Natural Science Foundation of China en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.doi 10.1109/JIOT.2023.3295397
dc.identifier.issn 2327-4662
dc.identifier.issn 2372-2541
dc.identifier.uri https://doi.org/10.1109/JIOT.2023.3295397
dc.identifier.uri https://hdl.handle.net/20.500.12469/6391
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.ispartof IEEE Internet of Things Journal
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convex combination en_US
dc.subject electromagnetic signature recognition en_US
dc.subject ensemble pseudolabel en_US
dc.subject semisupervised learning (SSL) en_US
dc.subject signal augmentation methods en_US
dc.title Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Dong, Zhicheng/0000-0003-3415-7682
gdc.author.id Liu, Xiaofeng/0000-0002-8185-1477
gdc.author.wosid Wang, Haozhi/AGU-4577-2022
gdc.author.wosid hong, xiaobin/E-7032-2012
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Wang, Haozhi; Wang, Qing; Chen, Luyong; Fu, Guanyang; Liu, Xiaofeng; Dong, Zhicheng] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China; [Dong, Zhicheng] Tibet Univ, Sch Informat Sci & Technol, Lasha 850000, Tibet, Peoples R China; [Panayirci, Erdal] Kadir Has Univ, Dept Elect & Elect Engn, TR-34083 Istanbul, Turkiye en_US
gdc.description.endpage 3174 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 3161 en_US
gdc.description.volume 11 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4384284168
gdc.identifier.wos WOS:001153911600117
gdc.index.type WoS
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5160802E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Modulation
gdc.oaire.keywords Internet of things
gdc.oaire.keywords Authentication
gdc.oaire.keywords Classification (of information)
gdc.oaire.keywords electromagnetic signature recognition
gdc.oaire.keywords Convex combinations
gdc.oaire.keywords Internet of Things
gdc.oaire.keywords Data models
gdc.oaire.keywords Features extraction
gdc.oaire.keywords Signature recognition
gdc.oaire.keywords Electromagnetics
gdc.oaire.keywords Augmentation methods
gdc.oaire.keywords Electromagnetic signature recognition
gdc.oaire.keywords convex combination
gdc.oaire.keywords Signal augmentation method
gdc.oaire.keywords Ensemble pseudo-label
gdc.oaire.keywords ensemble pseudo-label
gdc.oaire.keywords Semi-supervised learning
gdc.oaire.keywords signal augmentation methods
gdc.oaire.keywords Feature extraction
gdc.oaire.keywords Training
gdc.oaire.keywords Semisupervised learning
gdc.oaire.keywords Electromagnetic signatures
gdc.oaire.keywords Supervised learning
gdc.oaire.popularity 3.1166565E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.76632866
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 1
gdc.plumx.mendeley 1
gdc.plumx.newscount 1
gdc.plumx.scopuscites 3
gdc.virtual.author Panayırcı, Erdal
gdc.wos.citedcount 4
relation.isAuthorOfPublication 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isAuthorOfPublication.latestForDiscovery 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files