Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition
| dc.contributor.author | Wang, Haozhi | |
| dc.contributor.author | Wang, Qing | |
| dc.contributor.author | Chen, Luyong | |
| dc.contributor.author | Fu, Guanyang | |
| dc.contributor.author | Liu, Xiaofeng | |
| dc.contributor.author | Dong, Zhicheng | |
| dc.contributor.author | Panayirci, Erdal | |
| dc.date.accessioned | 2024-10-15T19:40:46Z | |
| dc.date.available | 2024-10-15T19:40:46Z | |
| dc.date.issued | 2024 | |
| dc.description | Dong, Zhicheng/0000-0003-3415-7682; Liu, Xiaofeng/0000-0002-8185-1477 | en_US |
| dc.description.abstract | Intelligent electromagnetic signature recognition is one of the key technologies in Internet of Things (IoT) device connection, which can improve system security and speed up the authentication process. In practical scenarios, as the number of IoT devices increases, electromagnetic features, such as fingerprint and modulation signals also increase substantially. However, since intelligent recognition technology, such as automatic modulation classification (AMC), requires a large amount of labeled data to train the neural network classifier, it is challenging to collect so much labeled data. To address the performance degradation challenges with small training data, we propose an efficient semisupervised electromagnetic recognition framework to break the performance gap with the fully supervised learning scheme. This framework can fully use the unlabeled electromagnetic data collected during the authentication process for self-training to improve the classifier's performance. According to the idea of consistency regularization, we design a signal augmentation method and propose an ensemble pseudolabel design algorithm to improve confidence. Moreover, we perform a convex combination of electromagnetic features to smooth the model decision boundary while generalizing to unknown data distribution regions. Experimental results on the modulated data demonstrate the performance superiority of the proposed algorithm, i.e., use less than 5% of data with no more than 10% performance drop. | en_US |
| dc.description.sponsorship | National Natural Science Foundation of China | en_US |
| dc.description.sponsorship | No Statement Available | en_US |
| dc.identifier.doi | 10.1109/JIOT.2023.3295397 | |
| dc.identifier.issn | 2327-4662 | |
| dc.identifier.issn | 2372-2541 | |
| dc.identifier.uri | https://doi.org/10.1109/JIOT.2023.3295397 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/6391 | |
| dc.language.iso | en | en_US |
| dc.publisher | Ieee-inst Electrical Electronics Engineers inc | en_US |
| dc.relation.ispartof | IEEE Internet of Things Journal | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Convex combination | en_US |
| dc.subject | electromagnetic signature recognition | en_US |
| dc.subject | ensemble pseudolabel | en_US |
| dc.subject | semisupervised learning (SSL) | en_US |
| dc.subject | signal augmentation methods | en_US |
| dc.title | Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Dong, Zhicheng/0000-0003-3415-7682 | |
| gdc.author.id | Liu, Xiaofeng/0000-0002-8185-1477 | |
| gdc.author.wosid | Wang, Haozhi/AGU-4577-2022 | |
| gdc.author.wosid | hong, xiaobin/E-7032-2012 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | [Wang, Haozhi; Wang, Qing; Chen, Luyong; Fu, Guanyang; Liu, Xiaofeng; Dong, Zhicheng] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China; [Dong, Zhicheng] Tibet Univ, Sch Informat Sci & Technol, Lasha 850000, Tibet, Peoples R China; [Panayirci, Erdal] Kadir Has Univ, Dept Elect & Elect Engn, TR-34083 Istanbul, Turkiye | en_US |
| gdc.description.endpage | 3174 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 3161 | en_US |
| gdc.description.volume | 11 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4384284168 | |
| gdc.identifier.wos | WOS:001153911600117 | |
| gdc.index.type | WoS | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.5160802E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Modulation | |
| gdc.oaire.keywords | Internet of things | |
| gdc.oaire.keywords | Authentication | |
| gdc.oaire.keywords | Classification (of information) | |
| gdc.oaire.keywords | electromagnetic signature recognition | |
| gdc.oaire.keywords | Convex combinations | |
| gdc.oaire.keywords | Internet of Things | |
| gdc.oaire.keywords | Data models | |
| gdc.oaire.keywords | Features extraction | |
| gdc.oaire.keywords | Signature recognition | |
| gdc.oaire.keywords | Electromagnetics | |
| gdc.oaire.keywords | Augmentation methods | |
| gdc.oaire.keywords | Electromagnetic signature recognition | |
| gdc.oaire.keywords | convex combination | |
| gdc.oaire.keywords | Signal augmentation method | |
| gdc.oaire.keywords | Ensemble pseudo-label | |
| gdc.oaire.keywords | ensemble pseudo-label | |
| gdc.oaire.keywords | Semi-supervised learning | |
| gdc.oaire.keywords | signal augmentation methods | |
| gdc.oaire.keywords | Feature extraction | |
| gdc.oaire.keywords | Training | |
| gdc.oaire.keywords | Semisupervised learning | |
| gdc.oaire.keywords | Electromagnetic signatures | |
| gdc.oaire.keywords | Supervised learning | |
| gdc.oaire.popularity | 3.1166565E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.76632866 | |
| gdc.openalex.normalizedpercentile | 0.71 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.virtual.author | Panayırcı, Erdal | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add | |
| relation.isAuthorOfPublication.latestForDiscovery | 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add | |
| relation.isOrgUnitOfPublication | 12b0068e-33e6-48db-b92a-a213070c3a8d | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12b0068e-33e6-48db-b92a-a213070c3a8d |
