From Text To Multimodal: a Survey of Adversarial Example Generation in Question Answering Systems

dc.authoridYigit, Gulsum/0000-0001-7010-169X
dc.authorscopusid57215312808
dc.authorscopusid55664402200
dc.authorwosidYiğit, Gülsüm/IVU-8380-2023
dc.authorwosidAmasyali, Fatih/AAZ-4791-2020
dc.contributor.authorYigit, Gulsum
dc.contributor.authorAmasyali, Mehmet Fatih
dc.date.accessioned2024-10-15T19:40:10Z
dc.date.available2024-10-15T19:40:10Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Yigit, Gulsum; Amasyali, Mehmet Fatih] Yildiz Tech Univ, Dept Comp Engn, Istanbul, Turkiye; [Yigit, Gulsum] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiyeen_US
dc.descriptionYigit, Gulsum/0000-0001-7010-169Xen_US
dc.description.abstractIntegrating adversarial machine learning with question answering (QA) systems has emerged as a critical area for understanding the vulnerabilities and robustness of these systems. This article aims to review adversarial example-generation techniques in the QA field, including textual and multimodal contexts. We examine the techniques employed through systematic categorization, providing a structured review. Beginning with an overview of traditional QA models, we traverse the adversarial example generation by exploring rule-based perturbations and advanced generative models. We then extend our research to include multimodal QA systems, analyze them across various methods, and examine generative models, seq2seq architectures, and hybrid methodologies. Our research grows to different defense strategies, adversarial datasets, and evaluation metrics and illustrates the literature on adversarial QA. Finally, the paper considers the future landscape of adversarial question generation, highlighting potential research directions that can advance textual and multimodal QA systems in the context of adversarial challenges.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkiye(TUB ITAK)en_US
dc.description.sponsorshipOpen access funding provided by the Scientific and Technological Research Council of Turkiye(TUB ITAK).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1007/s10115-024-02199-z
dc.identifier.issn0219-1377
dc.identifier.issn0219-3116
dc.identifier.scopus2-s2.0-85200991474
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10115-024-02199-z
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6352
dc.identifier.wosWOS:001288070100003
dc.identifier.wosqualityQ3
dc.institutionauthorYiğit, Gülsüm
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectQuestion answeringen_US
dc.subjectAdversarial question generationen_US
dc.subjectVisual question generationen_US
dc.subjectAdversarial datasetsen_US
dc.subjectAdversarial evaluation metricsen_US
dc.titleFrom Text To Multimodal: a Survey of Adversarial Example Generation in Question Answering Systemsen_US
dc.typeReviewen_US
dspace.entity.typePublication
relation.isAuthorOfPublication363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery363c092e-cd4b-400e-8261-ca5b99b1bea9

Files