From Text To Multimodal: a Survey of Adversarial Example Generation in Question Answering Systems

dc.contributor.author Yigit, Gulsum
dc.contributor.author Amasyali, Mehmet Fatih
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:40:10Z
dc.date.available 2024-10-15T19:40:10Z
dc.date.issued 2024
dc.description Yigit, Gulsum/0000-0001-7010-169X en_US
dc.description.abstract Integrating adversarial machine learning with question answering (QA) systems has emerged as a critical area for understanding the vulnerabilities and robustness of these systems. This article aims to review adversarial example-generation techniques in the QA field, including textual and multimodal contexts. We examine the techniques employed through systematic categorization, providing a structured review. Beginning with an overview of traditional QA models, we traverse the adversarial example generation by exploring rule-based perturbations and advanced generative models. We then extend our research to include multimodal QA systems, analyze them across various methods, and examine generative models, seq2seq architectures, and hybrid methodologies. Our research grows to different defense strategies, adversarial datasets, and evaluation metrics and illustrates the literature on adversarial QA. Finally, the paper considers the future landscape of adversarial question generation, highlighting potential research directions that can advance textual and multimodal QA systems in the context of adversarial challenges. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye(TUB ITAK) en_US
dc.description.sponsorship Open access funding provided by the Scientific and Technological Research Council of Turkiye(TUB ITAK). en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s10115-024-02199-z
dc.identifier.issn 0219-1377
dc.identifier.issn 0219-3116
dc.identifier.scopus 2-s2.0-85200991474
dc.identifier.uri https://doi.org/10.1007/s10115-024-02199-z
dc.identifier.uri https://hdl.handle.net/20.500.12469/6352
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Knowledge and Information Systems
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Question answering en_US
dc.subject Adversarial question generation en_US
dc.subject Visual question generation en_US
dc.subject Adversarial datasets en_US
dc.subject Adversarial evaluation metrics en_US
dc.title From Text To Multimodal: a Survey of Adversarial Example Generation in Question Answering Systems en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id Yigit, Gulsum/0000-0001-7010-169X
gdc.author.institutional Yiğit, Gülsüm
gdc.author.scopusid 57215312808
gdc.author.scopusid 55664402200
gdc.author.wosid Yiğit, Gülsüm/IVU-8380-2023
gdc.author.wosid Amasyali, Fatih/AAZ-4791-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::review
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Yigit, Gulsum; Amasyali, Mehmet Fatih] Yildiz Tech Univ, Dept Comp Engn, Istanbul, Turkiye; [Yigit, Gulsum] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye en_US
gdc.description.endpage 7204
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q2
gdc.description.startpage 7165
gdc.description.volume 66
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4401445178
gdc.identifier.wos WOS:001288070100003
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 3.0742378E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Computation and Language
gdc.oaire.keywords Artificial Intelligence (cs.AI)
gdc.oaire.keywords Computer Science - Artificial Intelligence
gdc.oaire.keywords Computation and Language (cs.CL)
gdc.oaire.popularity 2.9632445E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 2.465
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 0
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 8
gdc.wos.citedcount 4
relation.isAuthorOfPublication 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files