A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm

dc.contributor.author Zanbouri, Kouros
dc.contributor.author Bastak, Mostafa Razoughi
dc.contributor.author Alizadeh, Seyed Mehdi
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Yalcin, Senay
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:12:03Z
dc.date.available 2023-10-19T15:12:03Z
dc.date.issued 2022
dc.description.abstract The Internet of Things (IoT) has recently developed opportunities for various industries, including the petrochemical industry, that allow for intelligent manufacturing with real-time management and the analysis of the produced big data. In oil production, extracting oil reduces reservoir demand, causing oil supply to fall below the economically viable level. Gas lift is a popular artificial lift system that is both efficient and cost-effective. If gas supplies in the gas lift process are not limited, a sufficient amount of gas may be injected into the reservoir to reach the highest feasible production rate. Because of the limited supply of gas, it is essential to achieve the sustainable utilization of our limited resources and manage the injection rate of the gas into each well in order to enhance oil output while reducing gas injection. This study describes a novel IoT-based chemical reaction optimization (CRO) technique to solve the gas lift allocation issue. The CRO algorithm is inspired by the interaction of molecules with each other and achieving the lowest possible state of free energy from an unstable state. The CRO algorithm has excellent flexibility, enabling various operators to modify solutions and a favorable trade-off between intensification and diversity. A reasonably fast convergence rate serves as a powerful motivator to use as a solution. The extensive simulation and computational study have presented that the proposed method using CRO based on IoT systems significantly improves the overall oil production rate and reduces gas injection, energy consumption and cost compared to traditional algorithms. Therefore, it provides a more efficient system for the petroleum production industry. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.3390/electronics11223769 en_US
dc.identifier.issn 2079-9292
dc.identifier.scopus 2-s2.0-85142426626 en_US
dc.identifier.uri https://doi.org/10.3390/electronics11223769
dc.identifier.uri https://hdl.handle.net/20.500.12469/5328
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Electronics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Scheduling Problem En_Us
dc.subject Wells En_Us
dc.subject Constraints En_Us
dc.subject Framework En_Us
dc.subject internet of things en_US
dc.subject energy en_US
dc.subject Scheduling Problem
dc.subject chemical reaction optimization en_US
dc.subject Wells
dc.subject gas lift allocation en_US
dc.subject Constraints
dc.subject multi-objective optimization en_US
dc.subject Framework
dc.subject gas injection rate en_US
dc.title A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Jafari Navimipour, Nima/0000-0002-5514-5536
gdc.author.id Zanbouri, Kouros/0000-0003-0252-8282;
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.wosid Jafari Navimipour, Nima/AAF-5662-2021
gdc.author.wosid Zanbouri, Kouros/C-5031-2019
gdc.author.wosid Nasarian, Elham/ISB-6863-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Zanbouri, Kouros] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz 5157944533, Iran; [Bastak, Mostafa Razoughi] Univ Regina, Petr Syst Engn Engn & Appl Sci, Regina, SK S4S 0A2, Canada; [Alizadeh, Seyed Mehdi] Australian Univ, Petr Engn Dept, West Mishref 13015, Kuwait; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, TR-34083 Istanbul, Turkey; [Yalcin, Senay] Nisantasi Univ, Dept Comp Engn, TR-34398 Istanbul, Turkey en_US
gdc.description.issue 22 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3769
gdc.description.volume 11 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4309708571
gdc.identifier.wos WOS:000887132600001 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.7807667E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Framework
gdc.oaire.keywords gas injection rate
gdc.oaire.keywords Scheduling Problem
gdc.oaire.keywords internet of things
gdc.oaire.keywords multi-objective optimization
gdc.oaire.keywords chemical reaction optimization
gdc.oaire.keywords internet of things; energy; chemical reaction optimization; gas lift allocation; multi-objective optimization; gas injection rate
gdc.oaire.keywords Constraints
gdc.oaire.keywords gas lift allocation
gdc.oaire.keywords Wells
gdc.oaire.keywords energy
gdc.oaire.popularity 6.022073E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.fwci 0.363
gdc.openalex.normalizedpercentile 0.49
gdc.opencitations.count 4
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 19
gdc.plumx.newscount 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 3
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5328.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text