First-principle validation of Fourier's law in d=1, 2, 3 classical systems
Loading...
Files
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V.
Description
Keywords
Nonextensive statistical mechanics, Conduction, Langevin dynamics, Linear transport phenomena, Conduction, Irreversibility
Turkish CoHE Thesis Center URL
Fields of Science
Citation
2
WoS Q
Q1
Scopus Q
Q1
Source
Physica D-Nonlinear Phenomena
Volume
446