Explaining Mortgage Defaults Using Shap and Lasso

dc.contributor.author Ozturkkal, Belma
dc.contributor.author Wahlstrom, Ranik Raaen
dc.contributor.other International Trade and Finance
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2025-01-15T21:37:53Z
dc.date.available 2025-01-15T21:37:53Z
dc.date.issued 2024
dc.description.abstract We utilize machine learning methods to model the credit risk of mortgages in a significant emerging market. For this purpose, we investigate a multitude of variables that explain the characteristics of the loans, the demographics of the borrowers, and macroeconomic factors. We employ SHapley Additive exPlanations (SHAP) values in conjunction with five different tree-based machine learning methods, as well as the least absolute shrinkage and selection operator (LASSO) in conjunction with logistic regressions. Our findings, which are robust across two sampling schemes, reveal that while demographic variables are significant and important, loan-specific and macroeconomic variables are the most crucial in explaining mortgage defaults. As existing literature on mortgage default has primarily focused on advanced markets, we aim to bridge this gap by concentrating on emerging market data. We also share our code, which we hope will encourage others to utilize the methods we have applied. en_US
dc.description.sponsorship NTNU Norwegian University of Science and Technology (St. Olavs Hospital-Trondheim University Hospital); EU COST Action "Fintech and Artificial Intelligence in Finance- Towards a transparent financial industry" (FinAI) [CA19130] en_US
dc.description.sponsorship Open access funding provided by NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital-Trondheim University Hospital). This work acknowledges research support by EU COST Action "Fintech and Artificial Intelligence in Finance- Towards a transparent financial industry" (FinAI) CA19130. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s10614-024-10763-6
dc.identifier.issn 0927-7099
dc.identifier.issn 1572-9974
dc.identifier.scopus 2-s2.0-85213048609
dc.identifier.uri https://doi.org/10.1007/s10614-024-10763-6
dc.identifier.uri https://hdl.handle.net/20.500.12469/7114
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Computational Economics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mortgage Loan en_US
dc.subject Default Risk en_US
dc.subject Tree-Based Methods en_US
dc.subject Lasso en_US
dc.subject Shap en_US
dc.subject Emerging Market en_US
dc.subject C40 en_US
dc.subject C52 en_US
dc.subject C65 en_US
dc.subject G21 en_US
dc.title Explaining Mortgage Defaults Using Shap and Lasso en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Öztürkkal, Ayşe Belma
gdc.author.scopusid 55512229700
gdc.author.scopusid 57223099751
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Ozturkkal, Belma] Kadir Has Univ, Fac Econ Adm & Social Sci, Dept Int Trade & Finance, Istanbul, Turkiye; [Wahlstrom, Ranik Raaen] Norwegian Univ Sci & Technol, NTNU Business Sch, N-7491 Trondheim, Norway en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4405815404
gdc.identifier.wos WOS:001383449400001
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 12
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 4305087b-4178-478d-8846-9b1a77e8bfbe
relation.isAuthorOfPublication.latestForDiscovery 4305087b-4178-478d-8846-9b1a77e8bfbe
relation.isOrgUnitOfPublication 16202dfd-a149-4884-98fb-ada5f8c12918
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 16202dfd-a149-4884-98fb-ada5f8c12918

Files