Explaining Mortgage Defaults Using Shap and Lasso

dc.authorscopusid55512229700
dc.authorscopusid57223099751
dc.contributor.authorOzturkkal, Belma
dc.contributor.authorWahlstrom, Ranik Raaen
dc.date.accessioned2025-01-15T21:37:53Z
dc.date.available2025-01-15T21:37:53Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Ozturkkal, Belma] Kadir Has Univ, Fac Econ Adm & Social Sci, Dept Int Trade & Finance, Istanbul, Turkiye; [Wahlstrom, Ranik Raaen] Norwegian Univ Sci & Technol, NTNU Business Sch, N-7491 Trondheim, Norwayen_US
dc.description.abstractWe utilize machine learning methods to model the credit risk of mortgages in a significant emerging market. For this purpose, we investigate a multitude of variables that explain the characteristics of the loans, the demographics of the borrowers, and macroeconomic factors. We employ SHapley Additive exPlanations (SHAP) values in conjunction with five different tree-based machine learning methods, as well as the least absolute shrinkage and selection operator (LASSO) in conjunction with logistic regressions. Our findings, which are robust across two sampling schemes, reveal that while demographic variables are significant and important, loan-specific and macroeconomic variables are the most crucial in explaining mortgage defaults. As existing literature on mortgage default has primarily focused on advanced markets, we aim to bridge this gap by concentrating on emerging market data. We also share our code, which we hope will encourage others to utilize the methods we have applied.en_US
dc.description.sponsorshipNTNU Norwegian University of Science and Technology (St. Olavs Hospital-Trondheim University Hospital); EU COST Action "Fintech and Artificial Intelligence in Finance- Towards a transparent financial industry" (FinAI) [CA19130]en_US
dc.description.sponsorshipOpen access funding provided by NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital-Trondheim University Hospital). This work acknowledges research support by EU COST Action "Fintech and Artificial Intelligence in Finance- Towards a transparent financial industry" (FinAI) CA19130.en_US
dc.description.woscitationindexScience Citation Index Expanded - Social Science Citation Index
dc.identifier.citation0
dc.identifier.doi10.1007/s10614-024-10763-6
dc.identifier.issn0927-7099
dc.identifier.issn1572-9974
dc.identifier.scopus2-s2.0-85213048609
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10614-024-10763-6
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7114
dc.identifier.wosWOS:001383449400001
dc.identifier.wosqualityQ2
dc.institutionauthorÖztürkkal, Ayşe Belma
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMortgage Loanen_US
dc.subjectDefault Risken_US
dc.subjectTree-Based Methodsen_US
dc.subjectLassoen_US
dc.subjectShapen_US
dc.subjectEmerging Marketen_US
dc.subjectC40en_US
dc.subjectC52en_US
dc.subjectC65en_US
dc.subjectG21en_US
dc.titleExplaining Mortgage Defaults Using Shap and Lassoen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication4305087b-4178-478d-8846-9b1a77e8bfbe
relation.isAuthorOfPublication.latestForDiscovery4305087b-4178-478d-8846-9b1a77e8bfbe

Files