GPU accelerated molecular docking simulation with genetic algorithms

dc.authorscopusid57201897023
dc.authorscopusid6601990115
dc.authorscopusid6601906472
dc.contributor.authorBozkuş, Zeki
dc.contributor.authorBozkus,Z.
dc.contributor.authorFraguela,B.B.
dc.date.accessioned2024-10-15T19:41:53Z
dc.date.available2024-10-15T19:41:53Z
dc.date.issued2016
dc.departmentKadir Has Universityen_US
dc.department-tempAltuntaş S., Department of Computer Engineering, Kadir Has Üniversitesi, Istanbul, Turkey; Bozkus Z., Department of Computer Engineering, Kadir Has Üniversitesi, Istanbul, Turkey; Fraguela B.B., Depto. De Electrónica e Sistemas, Universidade da Coruña, A Coruña, Spainen_US
dc.descriptionCamara Municipal do Porto, Portugal; Institute for Informatics and Digital Innovation at Edinburgh Napier University, UK; Turismo do Porto, Portugal; University of Coimbra, Portugal; World Federation on Soft Computing (technical sponsor of the EvoCOMNET track)en_US
dc.description.abstractReceptor-Ligand Molecular Docking is a very computationally expensive process used to predict possible drug candidates for many diseases. A faster docking technique would help life scientists to discover better therapeutics with less effort and time. The requirement of long execution times may mean using a less accurate evaluation of drug candidates potentially increasing the number of false-positive solutions, which require expensive chemical and biological procedures to be discarded. Thus the development of fast and accurate enough docking algorithms greatly reduces wasted drug development resources, helping life scientists discover better therapeutics with less effort and time. In this article we present the GPU-based acceleration of our recently developed molecular docking code. We focus on offloading the most computationally intensive part of any docking simulation, which is the genetic algorithm, to accelerators, as it is very well suited to them. We show how the main functions of the genetic algorithm can be mapped to the GPU. The GPU-accelerated system achieves a speedup of around ~ 14x with respect to a single CPU core. This makes it very productive to use GPU for small molecule docking cases. © Springer International Publishing Switzerland 2016.en_US
dc.description.sponsorshipGalician Government, (GRC2013-055); TUBITAK, (112E191); European Commission, EC, (TIN2013-42148-P); Ministerio de Economía y Competitividad, MINECO; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK; European Regional Development Fund, ERDFen_US
dc.identifier.citation8
dc.identifier.doi10.1007/978-3-319-31153-1_10
dc.identifier.endpage146en_US
dc.identifier.isbn978-331931152-4
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-84962246245
dc.identifier.scopusqualityQ3
dc.identifier.startpage134en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-31153-1_10
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6479
dc.identifier.volume9598en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- 19th European Conference on Applications of Evolutionary Computation, EvoApplications 2016 -- 30 March 2016 through 1 April 2016 -- Porto -- 172609en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenetic algorithmen_US
dc.subjectGPUen_US
dc.subjectMolecular dockingen_US
dc.subjectOpenCLen_US
dc.subjectParallelizationen_US
dc.titleGPU accelerated molecular docking simulation with genetic algorithmsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication14914cc2-2a09-46be-a429-12ef3a6f5456
relation.isAuthorOfPublication.latestForDiscovery14914cc2-2a09-46be-a429-12ef3a6f5456

Files