Data-Driven Local Control Design for Dead Band Control of Load Tap Changers

dc.authorscopusid 57214754719
dc.authorscopusid 26665865200
dc.authorscopusid 26423147300
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.author Ceylan, O.
dc.contributor.author Paudyal, S.
dc.contributor.other Management Information Systems
dc.date.accessioned 2025-04-15T23:41:55Z
dc.date.available 2025-04-15T23:41:55Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Savasci A.] Abdullah Gul University, Turkey; [Ceylan O.] Kadir Has University, Turkey; [Paudyal S.] Florida International University, United States en_US
dc.description.abstract This study presents an off-line optimization-guided machine learning approach for coordinating the local control rules of on-load tap changers (OLTCs) and step-voltage regula-tors (SVRs). Based on a bang-bang control rule, these legacy devices autonomously regulate the feeder voltage around the nominal level by varying the tap position in the lower or raise direction. The characterizing parameter of the local control rule is the dead band, which affects the number of tap switching in operation and is directly related to the economical use life of the equipment. The bandwidth is typically set within a standard voltage range and is generally kept constant in daily operation. However, adjusting the bandwidth dynamically can prevent excessive tap switching while maintaining satisfactory voltage regulation for varying loading and distributed generation conditions. Our approach aims to set the bandwidth parameter systematically and efficiently through a machine learning-based scheme, which is trained with a dataset formed by solving the distribution network optimal power flow (DOPF) problem. The performance of learning the bandwidth parameter is demonstrated on the modified 33-node feeder, which is promising for integrated voltage control schemes. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/UPEC61344.2024.10892461
dc.identifier.isbn 9798350379730
dc.identifier.scopus 2-s2.0-86000797359
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/UPEC61344.2024.10892461
dc.identifier.uri https://hdl.handle.net/20.500.12469/7280
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2024 59th International Universities Power Engineering Conference, UPEC 2024 -- 59th International Universities Power Engineering Conference, UPEC 2024 -- 2 September 2024 through 6 September 2024 -- Cardiff -- 207176 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Distribution Grid en_US
dc.subject Machine Learning en_US
dc.subject Optimal Power Flow en_US
dc.subject Voltage Control en_US
dc.title Data-Driven Local Control Design for Dead Band Control of Load Tap Changers en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files