Automatic Segmentation of Time Series Data With Pelt Algorithm for Predictive Maintenance in the Flat Steel Industry

dc.authorscopusid59520568200
dc.authorscopusid24823826600
dc.authorscopusid35782637700
dc.contributor.authorKaçar, S.
dc.contributor.authorBalli, T.
dc.contributor.authorYetkin, E.F.
dc.date.accessioned2025-02-15T19:38:28Z
dc.date.available2025-02-15T19:38:28Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempKaçar S., Kadir Has University, Istanbul, Turkey, Borçelik A.Ş., Bursa, Turkey; Balli T., Kadir Has University, Istanbul, Turkey; Yetkin E.F., Kadir Has University, Istanbul, Turkeyen_US
dc.description.abstractIn this study, we aim to test the usability of Change Point Detection (CPD) algorithms (specifically the Pruned Exact Linear Time-PELT) to facilitate the utilization of large volumes of data within predictive mechanisms in the industry. We proposed an efficient CPD parameter selection mechanism for defect diagnosis using time-series vibration data from critical assets. We emphasized the practical algorithm PELT to ensure broad industrial applicability. Our experimental analysis, using synthetic and actual vibration data, demonstrated the practical applicability and effectiveness of PELT algorithm for automatic segmentation. The numerical results show the potential of CPD methodologies for improving predictive maintenance operations by providing an automatic segmentation mechanism. This pipeline proposes a way to increase the operational efficiency and scalability of predictive maintenance approaches, enhancing maintenance procedures and ensuring the long-term reliability of industrial systems. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/UBMK63289.2024.10773396
dc.identifier.endpage907en_US
dc.identifier.isbn9798350365887
dc.identifier.scopus2-s2.0-85215521309
dc.identifier.scopusqualityN/A
dc.identifier.startpage902en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773396
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7190
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChange Point Detection (Cpd)en_US
dc.subjectCost-Effective Solutionsen_US
dc.subjectFault Detectionen_US
dc.subjectHybrid Monitoring Systemen_US
dc.subjectOperational Efficiencyen_US
dc.subjectPredictive Maintenanceen_US
dc.subjectReal-Time Monitoringen_US
dc.subjectScalabilityen_US
dc.subjectVibration Dataen_US
dc.titleAutomatic Segmentation of Time Series Data With Pelt Algorithm for Predictive Maintenance in the Flat Steel Industryen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files