Computation and Optimization of Structural Leaf Venation Patterns for Digital Fabrication

dc.contributor.author Gokmen,S.
dc.contributor.other Architecture
dc.contributor.other 06. Faculty of Art and Design
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:42:15Z
dc.date.available 2024-10-15T19:42:15Z
dc.date.issued 2022
dc.description.abstract The morphogenetic design process of networking patterns produces anisotropic structural systems that can offer generative solutions for custom design applications. As an example of this type of pattern application, the leaf venation algorithm is introduced that can be customized through parametric inputs and density maps. This method is extended onto mesh surfaces incorporating multiple software applications combining aspects of parametric design, optimization and digital fabrication. The dynamic workflow is presented using a case study project titled “Calyx,” a public artwork completed using the computational tools developed as part of the research. The networking structural pattern of the sculpture yielded to the development of a geometry optimization process that allowed the digital fabrication of planarized structural members. The technical aspects of the design development and post-rationalization process for the construction of leaf venations patterns are discussed. © 2021 Elsevier Ltd en_US
dc.description.sponsorship Demiurge LLC; University of Rochester campus public art program; University of Rochester, UR en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1016/j.cad.2021.103150
dc.identifier.issn 0010-4485
dc.identifier.scopus 2-s2.0-85120304824
dc.identifier.uri https://doi.org/10.1016/j.cad.2021.103150
dc.identifier.uri https://hdl.handle.net/20.500.12469/6534
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof CAD Computer Aided Design en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Digital fabrication en_US
dc.subject Morphogenesis en_US
dc.subject Optimization en_US
dc.subject Post-rationalization en_US
dc.subject Venation en_US
dc.title Computation and Optimization of Structural Leaf Venation Patterns for Digital Fabrication en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Gökmen, Sabri
gdc.author.scopusid 6603560195
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Gokmen S., Kadir Has University, School of Architecture, Kadir Has Cd., Cibali/Fatih/İstanbul, 34083, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 103150
gdc.description.volume 144 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3217393946
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6389384E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Optimization
gdc.oaire.keywords Venation
gdc.oaire.keywords Digital fabrication
gdc.oaire.keywords Morphogenesis
gdc.oaire.keywords Post-rationalization
gdc.oaire.popularity 3.1210872E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 1.46
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isAuthorOfPublication 6a9c377d-cbfc-476c-ab56-a6a4709a5a21
relation.isAuthorOfPublication.latestForDiscovery 6a9c377d-cbfc-476c-ab56-a6a4709a5a21
relation.isOrgUnitOfPublication d5ff7ff5-f763-4811-85e5-286af2fe8152
relation.isOrgUnitOfPublication 8fe856d9-ed4d-45d5-8d18-d900eb9c3bff
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery d5ff7ff5-f763-4811-85e5-286af2fe8152

Files