A Comparative Study on Denoising From Facial Images Using Convolutional Autoencoder

dc.authorscopusid57206483065
dc.authorscopusid57963678400
dc.contributor.authorDarici, M.B.
dc.contributor.authorErdem, Z.
dc.date.accessioned2023-10-19T15:05:23Z
dc.date.available2023-10-19T15:05:23Z
dc.date.issued2023
dc.department-tempDarici, M.B., Kadir Has University, Department of Electrical-Electronics Engineering, Istanbul, Turkey; Erdem, Z., Kadir Has University, Department of Management Information Systems, Istanbul, Turkeyen_US
dc.description.abstractDenoising is one of the most important preprocesses in image processing. Noises in images can prevent extracting some important information stored in images. Therefore, before some implementations such as image classification, segmentation, etc., image denoising is a necessity to obtain good results. The purpose of this study is to compare the deep learning techniques and traditional techniques on denoising facial images considering two different types of noise (Gaussian and Salt&Pepper). Gaussian, Median, and Mean filters have been specified as traditional methods. For deep learning methods, deep convolutional denoising autoencoders (CDAE) structured on three different optimizers have been proposed. Both accuracy metrics and computational times have been considered to evaluate the denoising performance of proposed autoencoders, and traditional methods. The utilized standard evaluation metrics are the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM). It has been observed that overall, while the traditional methods gave results in shorter times in terms of computation times, the autoencoders performed better concerning the evaluation metrics. The CDAE based on the Adam optimizer has been shown the best results in terms of PSNR and SSIM metrics on removing both types of noise. © 2023, Gazi Universitesi. All rights reserved.en_US
dc.identifier.citation1
dc.identifier.doi10.35378/gujs.1051655en_US
dc.identifier.endpage1138en_US
dc.identifier.issn2147-1762
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85171459328en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage1122en_US
dc.identifier.urihttps://doi.org/10.35378/gujs.1051655
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4859
dc.identifier.volume36en_US
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherGazi Universitesien_US
dc.relation.ispartofGazi University Journal of Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAutoencoderen_US
dc.subjectDenoisingen_US
dc.subjectGaussian noiseen_US
dc.subjectSalt&pepper noiseen_US
dc.subjectConvolutionen_US
dc.subjectDeep learningen_US
dc.subjectGaussian distributionen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectImage segmentationen_US
dc.subjectLearning systemsen_US
dc.subjectMedian filtersen_US
dc.subjectSignal to noise ratioen_US
dc.subjectAuto encodersen_US
dc.subjectDe-noisingen_US
dc.subjectEvaluation metricsen_US
dc.subjectFacial imagesen_US
dc.subjectGaussian noiseen_US
dc.subjectGaussiansen_US
dc.subjectOptimizersen_US
dc.subjectPeak signal to noise ratioen_US
dc.subjectSalt-Pepper noiseen_US
dc.subjectStructural similarityen_US
dc.subjectSalt and pepper noiseen_US
dc.titleA Comparative Study on Denoising From Facial Images Using Convolutional Autoencoderen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4859.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text