Detecting Obfuscated Malware Infections on Windows Using Ensemble Learning Techniques

dc.authorscopusid35731194800
dc.authorscopusid57433105500
dc.authorscopusid59207602500
dc.contributor.authorImamverdiyev, Y.
dc.contributor.authorBaghirov, E.
dc.contributor.authorChukwu, I.J.
dc.date.accessioned2025-02-15T19:38:36Z
dc.date.available2025-02-15T19:38:36Z
dc.date.issued2025
dc.departmentKadir Has Universityen_US
dc.department-tempImamverdiyev Y., Cyber Security Department, Azerbaijan Technical University, Azerbaijan, 25, H. Javid Av., Baku, AZ 1073, Azerbaijan; Baghirov E., Institute of Information Technology of The Ministry of Science and Education of the Azerbaijan Republic, Kapital Bank OJSC, Azerbaijan, 5/13, A. Kunanbayev St., AZ 1009, Binagadi district, Baku, Azerbaijan; Chukwu I.J., Kadir Has University, Ss. Cyril and Methodius University in Skopje (UKIM), Türkiye, Fatih, Istanbul, 34083, Türkiyeen_US
dc.description.abstractIn the internet and smart devices era, malware detection has become crucial for system security. Obfuscated malware poses significant risks to various platforms, including computers, mobile devices, and IoT devices, by evading advanced security solutions. Traditional heuristic-based and signature-based methods often fail against these threats. Therefore, a cost-effective detection system was proposed using memory dump analysis and ensemble learning techniques. Utilizing the CIC-MalMem-2022 dataset, the effectiveness of decision trees, gradient-boosted trees, logistic Regression, random forest, and LightGBM in identifying obfuscated malware was evaluated. The study demonstrated the superiority of ensemble learning techniques in enhancing detection accuracy and robustness. Additionally, SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) were employed to elucidate model predictions, improving transparency and trustworthiness. The analysis revealed vital features significantly impacting malware detection, such as process services, active services, file handles, registry keys, and callback functions. These insights are crucial for refining detection strategies and enhancing model performance. The findings contribute to cybersecurity efforts by comprehensively assessing machine learning algorithms for obfuscated malware detection through memory analysis. This paper offers valuable insights for future research and advancements in malware detection, paving the way for more robust and effective cybersecurity solutions in the face of evolving and sophisticated malware threats. © 2025 St. Petersburg Federal Research Center of the Russian Academy of Sciences. All rights reserved.en_US
dc.identifier.citationcount0
dc.identifier.doi10.15622/ia.24.1.5
dc.identifier.endpage124en_US
dc.identifier.issn2713-3192
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85216397963
dc.identifier.scopusqualityQ4
dc.identifier.startpage99en_US
dc.identifier.urihttps://doi.org/10.15622/ia.24.1.5
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7202
dc.identifier.volume24en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSt. Petersburg Federal Research Center of the Russian Academy of Sciencesen_US
dc.relation.ispartofInformatics and Automationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectCybersecurityen_US
dc.subjectMachine Learningen_US
dc.subjectMalware Analysisen_US
dc.subjectMalware Detectionen_US
dc.titleDetecting Obfuscated Malware Infections on Windows Using Ensemble Learning Techniquesen_US
dc.title.alternativeОБНАРУЖЕНИЕ ОБФУСЦИРОВАННЫХ ВРЕДОНОСНЫХ ПРОГРАММ В WINDOWS С ПОМОЩЬЮ МЕТОДОВ АНСАМБЛЕВОГО ОБУЧЕНИЯen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files