Resource-Efficient Ensemble Learning for Edge Iiot Network Security Against Osint-Based Attacks

dc.authorscopusid57964038500
dc.authorscopusid59520347900
dc.authorscopusid59521007300
dc.authorscopusid57437833000
dc.authorscopusid6507328166
dc.contributor.authorEcevit, M.I.
dc.contributor.authorÇukur, Z.
dc.contributor.authorIzgün, M.A.
dc.contributor.authorUi Ain, N.
dc.contributor.authorDaǧ, H.
dc.date.accessioned2025-02-15T19:38:33Z
dc.date.available2025-02-15T19:38:33Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempEcevit M.I., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Çukur Z., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Izgün M.A., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Ui Ain N., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Daǧ H., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkeyen_US
dc.description.abstractThe rise of Edge IIoT networks has transformed industries by enabling real-time data processing, but these networks face significant c ybersecurity risks, particularly from OSINT-based attacks. This paper presents a resource-efficient ensemble learning framework designed to detect such attacks in Edge IIoT environments. The framework integrates machine learning models, including RandomForest, K-Nearest Neighbors, and Logistic Regression, optimized with Principal Component Analysis (PCA) to reduce data dimensionality and computational overhead. GridSearchCV and StratifiedKFold cross-validation were employed to fine-tune the models, resulting in high detection accuracy. This approach ensures robust and efficient security for resource-constrained Edge IIoT networks. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/UBMK63289.2024.10773407
dc.identifier.endpage783en_US
dc.identifier.isbn9798350365887
dc.identifier.scopus2-s2.0-85215524083
dc.identifier.scopusqualityN/A
dc.identifier.startpage778en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773407
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7195
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCyber Securityen_US
dc.subjectEdge Iioten_US
dc.subjectEnsemble Learningen_US
dc.subjectResource-Efficient Machine Learningen_US
dc.titleResource-Efficient Ensemble Learning for Edge Iiot Network Security Against Osint-Based Attacksen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files