Determination of a Diffusion Coefficient in a Quasilinear Parabolic Equation
| gdc.relation.journal | Open Mathematics | en_US |
| dc.contributor.author | Kanca, Fatma | |
| dc.date.accessioned | 2019-06-27T08:01:23Z | |
| dc.date.available | 2019-06-27T08:01:23Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | This paper investigates the inverse problem of finding the time-dependent diffusion coefficient in a quasilinear parabolic equation with the nonlocal boundary and integral overdetermination conditions. Under some natural regularity and consistency conditions on the input data the existence uniqueness and continuously dependence upon the data of the solution are shown. Finally some numerical experiments are presented. | en_US] |
| dc.identifier.citationcount | 2 | |
| dc.identifier.doi | 10.1515/math-2017-0003 | en_US |
| dc.identifier.issn | 2391-5455 | en_US |
| dc.identifier.issn | 2391-5455 | |
| dc.identifier.scopus | 2-s2.0-85014055267 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/367 | |
| dc.identifier.uri | https://doi.org/10.1515/math-2017-0003 | |
| dc.language.iso | en | en_US |
| dc.publisher | De Gruyter Open Ltd | en_US |
| dc.relation.ispartof | Open Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Heat equation | en_US |
| dc.subject | Inverse problem | en_US |
| dc.subject | Nonlocal boundary condition | en_US |
| dc.subject | Integral overdetermination condition | en_US |
| dc.subject | Time-dependent diffusion coefficient | en_US |
| dc.title | Determination of a Diffusion Coefficient in a Quasilinear Parabolic Equation | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Kanca, Fatma | en_US |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü | en_US |
| gdc.description.endpage | 91 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 77 | en_US |
| gdc.description.volume | 15 | en_US |
| gdc.identifier.openalex | W2588582878 | |
| gdc.identifier.wos | WOS:000394236200001 | en_US |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.798248E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Nonlocal boundary condition | |
| gdc.oaire.keywords | heat equation | |
| gdc.oaire.keywords | Heat equation | |
| gdc.oaire.keywords | 35k59 | |
| gdc.oaire.keywords | 35r30 | |
| gdc.oaire.keywords | Time-dependent diffusion coefficient | |
| gdc.oaire.keywords | Inverse problem | |
| gdc.oaire.keywords | integral overdetermination condition | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | inverse problem | |
| gdc.oaire.keywords | time-dependent diffusion coefficient | |
| gdc.oaire.keywords | Integral overdetermination condition | |
| gdc.oaire.keywords | nonlocal boundary condition | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 1.1789502E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.fwci | 0.509 | |
| gdc.openalex.normalizedpercentile | 0.41 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 2 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Determination of a diffusion coefficient in a quasilinear parabolic equation.pdf
- Size:
- 384.84 KB
- Format:
- Adobe Portable Document Format
- Description: