Nutrient Dynamics in Flooded Wetlands. I: Model Development

dc.authorscopusid6701452667
dc.authorscopusid6602531049
dc.authorscopusid14832441600
dc.authorscopusid24823628300
dc.contributor.authorHantush,M.M.
dc.contributor.authorKalin,L.
dc.contributor.authorIsik,S.
dc.contributor.authorYucekaya,A.
dc.date.accessioned2024-10-15T19:41:40Z
dc.date.available2024-10-15T19:41:40Z
dc.date.issued2013
dc.departmentKadir Has Universityen_US
dc.department-tempHantush M.M., Land Remediation and Pollution Control Division, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH 45268, U.S. EPA, 26 W. Martin Luther King Dr., United States; Kalin L., School of Forestry andWildlife Sciences, Auburn Univ., Auburn, AL 36849, 602 Duncan Dr, United States; Isik S., School of Forestry andWildlife Sciences, Auburn Univ., Auburn, AL 36849, 602 Duncan Dr, United States; Yucekaya A., Industrial Engineering, Kadir Has Univ., Cibali, Istanbul 34083, Turkeyen_US
dc.description.abstractWetlands are rich ecosystems recognized for ameliorating floods, improving water quality, and providing other ecosystem benefits. This part of a two-paper series presents a relatively detailed process-based model for nitrogen and phosphorus retention, cycling, and removal in flooded wetlands. The model captures salient features of nutrient dynamics and accounts for complex interactions among various physical, biogeochemical, and physiological processes. The model simulates oxygen dynamics and the impact of oxidizing and reducing conditions on nitrogen transformation and removal, and approximates phosphorus precipitation and releases into soluble forms under aerobic and anaerobic conditions, respectively. Nitrogen loss pathways of volatilization and denitrification are explicitly accounted for on a physical basis. Processes in surface water and the bottom-active soil layer are described by a system of coupled ordinary differential equations. A finite-difference numerical scheme is implemented to solve the coupled system of ordinary differential equations for various multiphase constituents' concentrations in the water column and wetland soil. The numerical solution algorithm is verified against analytical solutions obtained for simplified transport and fate scenarios. Quantitative global sensitivity analysis revealed consistent model performance with respect to critical parameters and dominant nutrient processes. A hypothetical phosphorus loading scenario shows that the model is capable of capturing the phenomenon of phosphorus precipitation and release under oxic and anoxic conditions, respectively. © 2013 American Society of Civil Engineers.en_US
dc.identifier.citationcount29
dc.identifier.doi10.1061/(ASCE)HE.1943-5584.0000741
dc.identifier.endpage1723en_US
dc.identifier.issn1084-0699
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-84888064963
dc.identifier.scopusqualityQ3
dc.identifier.startpage1709en_US
dc.identifier.urihttps://doi.org/10.1061/(ASCE)HE.1943-5584.0000741
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6456
dc.identifier.volume18en_US
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.relation.ispartofJournal of Hydrologic Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount30
dc.subjectAerobicen_US
dc.subjectAmmonia volatilizationen_US
dc.subjectAmmoniumen_US
dc.subjectAnaerobicen_US
dc.subjectDenitrificationen_US
dc.subjectDiffusionen_US
dc.subjectModelen_US
dc.subjectNitrificationen_US
dc.subjectNitrogenen_US
dc.subjectPhosphorusen_US
dc.subjectSedimenten_US
dc.subjectSediment oxygen demanden_US
dc.subjectWetlandsen_US
dc.titleNutrient Dynamics in Flooded Wetlands. I: Model Developmenten_US
dc.typeArticleen_US
dspace.entity.typePublication

Files