Bianchi Surfaces Whose Asymptotic Lines Are Geodesic Parallels

dc.contributor.author Arsan, Güler Gürpınar
dc.contributor.author Özdeğer, Abdulkadir
dc.date.accessioned 2019-06-27T08:02:39Z
dc.date.available 2019-06-27T08:02:39Z
dc.date.issued 2015
dc.description.abstract It is proved that every Bianchi surface in E-3 of class C-4 whose asymptotic lines are geodesic parallels is either a helicoid or a surface of revolution. en_US]
dc.identifier.doi 10.1515/advgeom-2014-0020 en_US
dc.identifier.issn 1615-715X en_US
dc.identifier.issn 1615-7168 en_US
dc.identifier.issn 1615-715X
dc.identifier.issn 1615-7168
dc.identifier.scopus 2-s2.0-84921383813 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/661
dc.language.iso en en_US
dc.publisher Walter De Gruyter Gmbh en_US
dc.relation.ispartof Advances in Geometry
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bianchi surface en_US
dc.subject Asymptotic Line en_US
dc.subject Geodesic Parallel en_US
dc.subject Geodesic Ellipse en_US
dc.subject Geodesic Hyperbola en_US
dc.subject Helicoidal Surface en_US
dc.title Bianchi Surfaces Whose Asymptotic Lines Are Geodesic Parallels en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.endpage 6
gdc.description.issue 1
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1 en_US
gdc.description.volume 15 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2334909716
gdc.identifier.wos WOS:000347957600001 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Helicoidal Surface
gdc.oaire.keywords Geodesic Hyperbola
gdc.oaire.keywords Geodesic Parallel
gdc.oaire.keywords Asymptotic Line
gdc.oaire.keywords Geodesic Ellipse
gdc.oaire.keywords Bianchi surface
gdc.oaire.keywords geodesic ellipse
gdc.oaire.keywords asymptotic line
gdc.oaire.keywords Other special differential geometries
gdc.oaire.keywords geodesic parallel
gdc.oaire.keywords geodesic hyperbola
gdc.oaire.keywords Surfaces in Euclidean and related spaces
gdc.oaire.keywords helicoidal surface
gdc.oaire.keywords Conformal differential geometry
gdc.oaire.popularity 7.2161055E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.15
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.relation.journal Advances In Geometry
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bianchi surfaces whose asymptotic lines are geodesic parallels.pdf
Size:
389.1 KB
Format:
Adobe Portable Document Format
Description: