Bianchi surfaces whose asymptotic lines are geodesic parallels
dc.contributor.author | Arsan, Güler Gürpınar | |
dc.contributor.author | Özdeğer, Abdulkadir | |
dc.date.accessioned | 2019-06-27T08:02:39Z | |
dc.date.available | 2019-06-27T08:02:39Z | |
dc.date.issued | 2015 | |
dc.description.abstract | It is proved that every Bianchi surface in E-3 of class C-4 whose asymptotic lines are geodesic parallels is either a helicoid or a surface of revolution. | en_US] |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1515/advgeom-2014-0020 | en_US |
dc.identifier.endpage | 6 | |
dc.identifier.issn | 1615-715X | en_US |
dc.identifier.issn | 1615-7168 | en_US |
dc.identifier.issn | 1615-715X | |
dc.identifier.issn | 1615-7168 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-84921383813 | en_US |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/661 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000347957600001 | en_US |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Walter De Gruyter Gmbh | en_US |
dc.relation.journal | Advances In Geometry | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bianchi surface | en_US |
dc.subject | Asymptotic Line | en_US |
dc.subject | Geodesic Parallel | en_US |
dc.subject | Geodesic Ellipse | en_US |
dc.subject | Geodesic Hyperbola | en_US |
dc.subject | Helicoidal Surface | en_US |
dc.title | Bianchi surfaces whose asymptotic lines are geodesic parallels | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bianchi surfaces whose asymptotic lines are geodesic parallels.pdf
- Size:
- 389.1 KB
- Format:
- Adobe Portable Document Format
- Description: