Bianchi Surfaces Whose Asymptotic Lines Are Geodesic Parallels

gdc.relation.journal Advances In Geometry en_US
dc.contributor.author Arsan, Güler Gürpınar
dc.contributor.author Özdeğer, Abdulkadir
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:02:39Z
dc.date.available 2019-06-27T08:02:39Z
dc.date.issued 2015
dc.description.abstract It is proved that every Bianchi surface in E-3 of class C-4 whose asymptotic lines are geodesic parallels is either a helicoid or a surface of revolution. en_US]
dc.identifier.citationcount 0
dc.identifier.doi 10.1515/advgeom-2014-0020 en_US
dc.identifier.issn 1615-715X en_US
dc.identifier.issn 1615-7168 en_US
dc.identifier.issn 1615-715X
dc.identifier.issn 1615-7168
dc.identifier.scopus 2-s2.0-84921383813 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/661
dc.language.iso en en_US
dc.publisher Walter De Gruyter Gmbh en_US
dc.relation.ispartof Advances in Geometry
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bianchi surface en_US
dc.subject Asymptotic Line en_US
dc.subject Geodesic Parallel en_US
dc.subject Geodesic Ellipse en_US
dc.subject Geodesic Hyperbola en_US
dc.subject Helicoidal Surface en_US
dc.title Bianchi Surfaces Whose Asymptotic Lines Are Geodesic Parallels en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.endpage 6
gdc.description.issue 1
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1 en_US
gdc.description.volume 15 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2334909716
gdc.identifier.wos WOS:000347957600001 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Helicoidal Surface
gdc.oaire.keywords Geodesic Hyperbola
gdc.oaire.keywords Geodesic Parallel
gdc.oaire.keywords Asymptotic Line
gdc.oaire.keywords Geodesic Ellipse
gdc.oaire.keywords Bianchi surface
gdc.oaire.popularity 8.5721724E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bianchi surfaces whose asymptotic lines are geodesic parallels.pdf
Size:
389.1 KB
Format:
Adobe Portable Document Format
Description: