Markdown Optimization in Apparel Retail Sector

dc.authoridHekimoglu, Mustafa/0000-0001-9446-0582
dc.authorscopusid57193505462
dc.authorscopusid57468453800
dc.authorwosidHekimoglu, Mustafa/Grf-1500-2022
dc.contributor.authorYildiz, Sevde Ceren
dc.contributor.authorHekimoğlu, Mustafa
dc.contributor.authorHekimoglu, Mustafa
dc.date.accessioned2023-10-19T15:05:23Z
dc.date.available2023-10-19T15:05:23Z
dc.date.issued2020
dc.departmentKadir Has Universityen_US
dc.department-temp[Yildiz, Sevde Ceren] Dogus Univ, Dept Ind Engn, Istanbul, Turkey; [Hekimoglu, Mustafa] Kadir Has Univ, Dept Ind Engn, Istanbul, Turkeyen_US
dc.descriptionHekimoglu, Mustafa/0000-0001-9446-0582en_US
dc.description.abstractPrice discounts, known as markdowns, are important for fast fashion retailers to utilize inventory in a distribution channel using demand management. Estimating future demand for a given discount level requires the evaluation of historical sales data. In this evaluation recent observations might be more important than the older ones as majority of price discounts take place at the end of a selling season and that time period provides more accurate estimations. In this study, we consider a weighted least squares method for the parameter estimation of an empirical demand model used in a markdown optimization system. We suggest a heuristic procedure for the implementation of weighted least squares in a markdown optimization utilizing a generic weight function from the literature. We tested the suggested system using empirical data from a Turkish apparel retailer. Our results indicate that the weighted least squaresmethod is more proper than the ordinary least squares for the fast fashion sales data as it captures price sensitivity of demand at the end of a selling season more accurately.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Social Science & Humanities
dc.identifier.citationcount1
dc.identifier.doi10.1007/978-3-030-47764-6_6en_US
dc.identifier.doi10.1007/978-3-030-47764-6_6
dc.identifier.endpage57en_US
dc.identifier.isbn9783030477639
dc.identifier.isbn9783030477646
dc.identifier.issn2198-7246
dc.identifier.issn2198-7254
dc.identifier.scopus2-s2.0-85125305833en_US
dc.identifier.scopus2-s2.0-85125305833
dc.identifier.scopusqualityQ4
dc.identifier.startpage50en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-47764-6_6
dc.identifier.wosWOS:001342444300006
dc.identifier.wosqualityN/A
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherSpringer international Publishing Agen_US
dc.relation.ispartof7th International Conference on Research on National Brand & Private Label Marketing (NB&PL) -- JUN 17-19, 2020 -- Barcelona, SPAINen_US
dc.relation.ispartofseriesSpringer Proceedings in Business and Economics
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subjectMarkdown Optimizationen_US
dc.subjectDemand Forecastingen_US
dc.subjectWeighted Least Squaresen_US
dc.subjectApproximate Dynamic Programmingen_US
dc.titleMarkdown Optimization in Apparel Retail Sectoren_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication.latestForDiscovery533132ce-5631-4068-91c5-2806df0f65bb

Files