Markdown Optimization in Apparel Retail Sector

dc.authorid Hekimoglu, Mustafa/0000-0001-9446-0582
dc.authorscopusid 57193505462
dc.authorscopusid 57468453800
dc.authorwosid Hekimoglu, Mustafa/Grf-1500-2022
dc.contributor.author Yildiz, Sevde Ceren
dc.contributor.author Hekimoğlu, Mustafa
dc.contributor.author Hekimoglu, Mustafa
dc.contributor.other Industrial Engineering
dc.date.accessioned 2023-10-19T15:05:23Z
dc.date.available 2023-10-19T15:05:23Z
dc.date.issued 2020
dc.department Kadir Has University en_US
dc.department-temp [Yildiz, Sevde Ceren] Dogus Univ, Dept Ind Engn, Istanbul, Turkey; [Hekimoglu, Mustafa] Kadir Has Univ, Dept Ind Engn, Istanbul, Turkey en_US
dc.description Hekimoglu, Mustafa/0000-0001-9446-0582 en_US
dc.description.abstract Price discounts, known as markdowns, are important for fast fashion retailers to utilize inventory in a distribution channel using demand management. Estimating future demand for a given discount level requires the evaluation of historical sales data. In this evaluation recent observations might be more important than the older ones as majority of price discounts take place at the end of a selling season and that time period provides more accurate estimations. In this study, we consider a weighted least squares method for the parameter estimation of an empirical demand model used in a markdown optimization system. We suggest a heuristic procedure for the implementation of weighted least squares in a markdown optimization utilizing a generic weight function from the literature. We tested the suggested system using empirical data from a Turkish apparel retailer. Our results indicate that the weighted least squaresmethod is more proper than the ordinary least squares for the fast fashion sales data as it captures price sensitivity of demand at the end of a selling season more accurately. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Social Science & Humanities
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/978-3-030-47764-6_6 en_US
dc.identifier.doi 10.1007/978-3-030-47764-6_6
dc.identifier.endpage 57 en_US
dc.identifier.isbn 9783030477639
dc.identifier.isbn 9783030477646
dc.identifier.issn 2198-7246
dc.identifier.issn 2198-7254
dc.identifier.scopus 2-s2.0-85125305833 en_US
dc.identifier.scopus 2-s2.0-85125305833
dc.identifier.scopusquality Q4
dc.identifier.startpage 50 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-47764-6_6
dc.identifier.wos WOS:001342444300006
dc.identifier.wosquality N/A
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof 7th International Conference on Research on National Brand & Private Label Marketing (NB&PL) -- JUN 17-19, 2020 -- Barcelona, SPAIN en_US
dc.relation.ispartofseries Springer Proceedings in Business and Economics
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Markdown Optimization en_US
dc.subject Demand Forecasting en_US
dc.subject Weighted Least Squares en_US
dc.subject Approximate Dynamic Programming en_US
dc.title Markdown Optimization in Apparel Retail Sector en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication.latestForDiscovery 533132ce-5631-4068-91c5-2806df0f65bb
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files