Markdown Optimization in Apparel Retail Sector

dc.authorscopusid57468453800
dc.authorscopusid57193505462
dc.contributor.authorYıldız, S.C.
dc.contributor.authorHekimoğlu, M.
dc.date.accessioned2023-10-19T15:05:23Z
dc.date.available2023-10-19T15:05:23Z
dc.date.issued2020
dc.department-tempYıldız, S.C., Department of Industrial Engineering, Doğuş University, Istanbul, Turkey; Hekimoğlu, M., Department of Industrial Engineering, Kadir Has University, Istanbul, Turkeyen_US
dc.description7th International Conference on Research on National Brand and Private Label Marketing, NB and PL 2020 --17 June 2020 through 20 June 2020 -- --272419en_US
dc.description.abstractPrice discounts, known as markdowns, are important for fast fashion retailers to utilize inventory in a distribution channel using demand management. Estimating future demand for a given discount level requires the evaluation of historical sales data. In this evaluation recent observations might be more important than the older ones as majority of price discounts take place at the end of a selling season and that time period provides more accurate estimations. In this study, we consider a weighted least squares method for the parameter estimation of an empirical demand model used in a markdown optimization system. We suggest a heuristic procedure for the implementation of weighted least squares in a markdown optimization utilizing a generic weight function from the literature. We tested the suggested system using empirical data from a Turkish apparel retailer. Our results indicate that the weighted least squares method is more proper than the ordinary least squares for the fast fashion sales data as it captures price sensitivity of demand at the end of a selling season more accurately. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.citation1
dc.identifier.doi10.1007/978-3-030-47764-6_6en_US
dc.identifier.endpage57en_US
dc.identifier.isbn9783030477639
dc.identifier.issn2198-7246
dc.identifier.scopus2-s2.0-85125305833en_US
dc.identifier.startpage50en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-47764-6_6
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4865
dc.institutionauthorHekimoğlu, Mustafa
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.relation.ispartofSpringer Proceedings in Business and Economicsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectApproximate dynamic programmingen_US
dc.subjectDemand forecastingen_US
dc.subjectMarkdown optimizationen_US
dc.subjectWeighted least squaresen_US
dc.titleMarkdown Optimization in Apparel Retail Sectoren_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication.latestForDiscovery533132ce-5631-4068-91c5-2806df0f65bb

Files