Counterfactual Reconciliation: Incorporating Aggregation Constraints for More Accurate Causal Effect Estimates

dc.authorscopusid57205096068
dc.authorscopusid39763212900
dc.contributor.authorCengiz, D.
dc.contributor.authorTekgüç, H.
dc.date.accessioned2023-10-19T15:05:14Z
dc.date.available2023-10-19T15:05:14Z
dc.date.issued2022
dc.department-tempCengiz, D., The Home Depot, United States; Tekgüç, H., Kadir Has University, Turkeyen_US
dc.description.abstractWe extend the scope of the forecast reconciliation literature and use its tools in the context of causal inference. Researchers are interested in both the average treatment effect on the treated and treatment effect heterogeneity. We show that ex post correction of the counterfactual estimates using the aggregation constraints that stem from the hierarchical or grouped structure of the data is likely to yield more accurate estimates. Building on the geometric interpretation of forecast reconciliation, we provide additional insights into the exact factors determining the size of the accuracy improvement due to the reconciliation. We experiment with U.S. GDP and employment data. We find that the reconciled treatment effect estimates tend to be closer to the truth than the original (base) counterfactual estimates even in cases where the aggregation constraints are non-linear. Consistent with our theoretical expectations, improvement is greater when machine learning methods are used. © 2022 International Institute of Forecastersen_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.ijforecast.2022.08.011en_US
dc.identifier.issn0169-2070
dc.identifier.scopus2-s2.0-85143872304en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.ijforecast.2022.08.011
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4752
dc.identifier.wosqualityQ1
dc.institutionauthorTekgüç, Hasan
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofInternational Journal of Forecastingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCausal machine learning methodsen_US
dc.subjectCounterfactual estimationen_US
dc.subjectDifference-in-differencesen_US
dc.subjectForecast reconciliationen_US
dc.subjectNon-linear constraintsen_US
dc.titleCounterfactual Reconciliation: Incorporating Aggregation Constraints for More Accurate Causal Effect Estimatesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication65b30906-4ef5-49b1-a10e-f86c44eb7b0d
relation.isAuthorOfPublication.latestForDiscovery65b30906-4ef5-49b1-a10e-f86c44eb7b0d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4752.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text