Counterfactual Reconciliation: Incorporating Aggregation Constraints for More Accurate Causal Effect Estimates

dc.contributor.author Cengiz, D.
dc.contributor.author Tekgüç, H.
dc.contributor.other Economics
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:05:14Z
dc.date.available 2023-10-19T15:05:14Z
dc.date.issued 2022
dc.description.abstract We extend the scope of the forecast reconciliation literature and use its tools in the context of causal inference. Researchers are interested in both the average treatment effect on the treated and treatment effect heterogeneity. We show that ex post correction of the counterfactual estimates using the aggregation constraints that stem from the hierarchical or grouped structure of the data is likely to yield more accurate estimates. Building on the geometric interpretation of forecast reconciliation, we provide additional insights into the exact factors determining the size of the accuracy improvement due to the reconciliation. We experiment with U.S. GDP and employment data. We find that the reconciled treatment effect estimates tend to be closer to the truth than the original (base) counterfactual estimates even in cases where the aggregation constraints are non-linear. Consistent with our theoretical expectations, improvement is greater when machine learning methods are used. © 2022 International Institute of Forecasters en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.ijforecast.2022.08.011 en_US
dc.identifier.issn 0169-2070
dc.identifier.scopus 2-s2.0-85143872304 en_US
dc.identifier.uri https://doi.org/10.1016/j.ijforecast.2022.08.011
dc.identifier.uri https://hdl.handle.net/20.500.12469/4752
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartof International Journal of Forecasting en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Causal machine learning methods en_US
dc.subject Counterfactual estimation en_US
dc.subject Difference-in-differences en_US
dc.subject Forecast reconciliation en_US
dc.subject Non-linear constraints en_US
dc.title Counterfactual Reconciliation: Incorporating Aggregation Constraints for More Accurate Causal Effect Estimates en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Tekgüç, Hasan
gdc.author.scopusid 57205096068
gdc.author.scopusid 39763212900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp Cengiz, D., The Home Depot, United States; Tekgüç, H., Kadir Has University, Turkey en_US
gdc.description.endpage 580
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 564
gdc.description.volume 40
gdc.description.wosquality Q1
gdc.identifier.openalex W4311064505
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Difference-in-differences
gdc.oaire.keywords Non-linear constraints
gdc.oaire.keywords Forecast reconciliation
gdc.oaire.keywords Causal machine learning methods
gdc.oaire.keywords Counterfactual estimation
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 65b30906-4ef5-49b1-a10e-f86c44eb7b0d
relation.isAuthorOfPublication.latestForDiscovery 65b30906-4ef5-49b1-a10e-f86c44eb7b0d
relation.isOrgUnitOfPublication c7c3d3ed-3819-4066-adbd-b0a2bbda3041
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery c7c3d3ed-3819-4066-adbd-b0a2bbda3041

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4752.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text