Using Hybrid Approaches for Credit Application Scoring

dc.authorscopusid 58641292900
dc.authorscopusid 7801329641
dc.contributor.author Mirza,F.K.
dc.contributor.author Ogrenci,A.S.
dc.date.accessioned 2024-06-23T21:38:35Z
dc.date.available 2024-06-23T21:38:35Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp Mirza F.K., Kadir Has University, Dept. of Electrical-Electronics Engineering, Istanbul, Turkey; Ogrenci A.S., Kadir Has University, Dept. of Electrical-Electronics Engineering, Istanbul, Turkey en_US
dc.description.abstract Using various methods of computational intelligence, scores for credit applications are predicted for making a decision to accept or to reject. Past data about credits accepted in a financial institution are used to develop hybrid models implementing gradient boosting and attention supported neural networks. The performance (Gini scores above 0.7), limitations and further research directions are discussed. © 2023 IEEE. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (1505-5220055) en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/CINTI59972.2023.10382025
dc.identifier.endpage 116 en_US
dc.identifier.isbn 979-835034294-9
dc.identifier.scopus 2-s2.0-85184121699
dc.identifier.startpage 111 en_US
dc.identifier.uri https://doi.org/10.1109/CINTI59972.2023.10382025
dc.identifier.uri https://hdl.handle.net/20.500.12469/5813
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof IEEE 23rd International Symposium on Computational Intelligence and Informatics, CINTI 2023 - Proceedings -- 23rd IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2023 -- 20 November 2023 through 22 November 2023 -- Budapest -- 196335 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject attention mechanism en_US
dc.subject credit scoring en_US
dc.subject gradient boosting en_US
dc.subject neural networks en_US
dc.subject unbalanced data en_US
dc.title Using Hybrid Approaches for Credit Application Scoring en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files