Using Hybrid Approaches for Credit Application Scoring

dc.authorscopusid58641292900
dc.authorscopusid7801329641
dc.contributor.authorMirza,F.K.
dc.contributor.authorOgrenci,A.S.
dc.date.accessioned2024-06-23T21:38:35Z
dc.date.available2024-06-23T21:38:35Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-tempMirza F.K., Kadir Has University, Dept. of Electrical-Electronics Engineering, Istanbul, Turkey; Ogrenci A.S., Kadir Has University, Dept. of Electrical-Electronics Engineering, Istanbul, Turkeyen_US
dc.description.abstractUsing various methods of computational intelligence, scores for credit applications are predicted for making a decision to accept or to reject. Past data about credits accepted in a financial institution are used to develop hybrid models implementing gradient boosting and attention supported neural networks. The performance (Gini scores above 0.7), limitations and further research directions are discussed. © 2023 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (1505-5220055)en_US
dc.identifier.citation0
dc.identifier.doi10.1109/CINTI59972.2023.10382025
dc.identifier.endpage116en_US
dc.identifier.isbn979-835034294-9
dc.identifier.scopus2-s2.0-85184121699
dc.identifier.startpage111en_US
dc.identifier.urihttps://doi.org/10.1109/CINTI59972.2023.10382025
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5813
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE 23rd International Symposium on Computational Intelligence and Informatics, CINTI 2023 - Proceedings -- 23rd IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2023 -- 20 November 2023 through 22 November 2023 -- Budapest -- 196335en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattention mechanismen_US
dc.subjectcredit scoringen_US
dc.subjectgradient boostingen_US
dc.subjectneural networksen_US
dc.subjectunbalanced dataen_US
dc.titleUsing Hybrid Approaches for Credit Application Scoringen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files