Certification of almost global phase synchronization of all-to-all coupled phase oscillators
dc.authorid | Koksal-Ersoz, Elif/0000-0003-3696-7953 | |
dc.authorid | Kivilcim, Aysegul/0000-0002-4442-568X | |
dc.authorwosid | Kivilcim, Aysegul/A-4185-2019 | |
dc.contributor.author | Karabacak, Özkan | |
dc.contributor.author | Kudeyt, Mahmut | |
dc.contributor.author | Koksal-Ersoz, Elif | |
dc.contributor.author | Ilhan, Ferruh | |
dc.contributor.author | Karabacak, Ozkan | |
dc.date.accessioned | 2023-10-19T15:12:12Z | |
dc.date.available | 2023-10-19T15:12:12Z | |
dc.date.issued | 2023 | |
dc.department-temp | [Kudeyt, Mahmut] Kadir Has Univ, Core Program, TR-34083 Istanbul, Turkiye; [Kivilcim, Aysegul] Aalborg Univ, Dept Math Sci, Skjernvej 4A, DK-9220 Aalborg, Denmark; [Koksal-Ersoz, Elif] Univ Rennes, INSERM, LTSI, UMR 1099, F-35000 Rennes, France; [Ilhan, Ferruh] Univ Turkish German Univ, Dept Elect Engn, TR-34820 Istanbul, Turkiye; [Karabacak, Ozkan] Kadir Has Univ, Dept Mechatron Engn, TR-34083 Istanbul, Turkiye | en_US |
dc.description.abstract | Coupled oscillators may exhibit almost global phase synchronization, namely their phases tend to asymp-totically overlap for almost all initial conditions. We consider certification of this property using Rantzer's dual Lyapunov approach with sum of squares (SOS) programming. To this aim, we use a stereographic transformation from a hypertorus to an Euclidean space. For the case of all-to-all coupling, this transformation converts the problem of certifying stability into the problem of certifying divergence of almost all solutions to infinity. We show that the latter can be solved using a polynomial Lyapunov density, which can be constructed via SOS programming. This leads to the certification of almost global phase synchronization of all-to-all coupled phase oscillators. We apply our method to an example of coupled phase oscillators and to an example of coupled van der Pol oscillators, and show that it can support the existing tools of local stability analysis by ensuring almost global phase synchronization. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.chaos.2023.113838 | en_US |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.scopus | 2-s2.0-85165528775 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2023.113838 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5373 | |
dc.identifier.volume | 174 | en_US |
dc.identifier.wos | WOS:001053981700001 | en_US |
dc.identifier.wosquality | Q1 | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Chaos Solitons & Fractals | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dissipative Dynamical-Systems | En_Us |
dc.subject | Response Curves | En_Us |
dc.subject | Stability | En_Us |
dc.subject | Verification | En_Us |
dc.subject | Sensitivity | En_Us |
dc.subject | Networks | En_Us |
dc.subject | Kuramoto | En_Us |
dc.subject | Dissipative Dynamical-Systems | |
dc.subject | Response Curves | |
dc.subject | Stability | |
dc.subject | Verification | |
dc.subject | Dual Lyapunov theory | en_US |
dc.subject | Sensitivity | |
dc.subject | Kuramoto oscillators | en_US |
dc.subject | Networks | |
dc.subject | Phase synchronization | en_US |
dc.subject | Kuramoto | |
dc.subject | Sum of squares programming | en_US |
dc.title | Certification of almost global phase synchronization of all-to-all coupled phase oscillators | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a7f221bd-0e6f-4846-a7cc-18833a9ab0f8 | |
relation.isAuthorOfPublication | da3ff0ab-bec8-4989-9fb1-2125a00dcdab | |
relation.isAuthorOfPublication.latestForDiscovery | a7f221bd-0e6f-4846-a7cc-18833a9ab0f8 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5373.pdf
- Size:
- 1.3 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text