Predatory Conversation Detection Using Transfer Learning Approach

dc.contributor.author Agarwal, Nancy
dc.contributor.author Unlu, Tugce
dc.contributor.author Wani, Mudasir Ahmad
dc.contributor.author Bours, Patrick
dc.date.accessioned 2023-10-19T15:12:47Z
dc.date.available 2023-10-19T15:12:47Z
dc.date.issued 2022
dc.description 7th International Conference on Machine Learning, Optimization, and Data Science (LOD) / 1st Symposium on Artificial Intelligence and Neuroscience (ACAIN) -- OCT 04-08, 2021 -- ELECTR NETWORK en_US
dc.description.abstract Predatory conversation detection on social media can proactively prevent the netizens, including youngsters and children, from getting exploited by sexual predators. Earlier studies have majorly employed machine learning approaches such as Support Vector Machine (SVM) for detecting such conversations. Since deep learning frameworks have shown significant improvements in various text classification tasks, therefore, in this paper, we propose a deep learning-based classifier for detecting predatory conversations. Furthermore, instead of designing the system from the beginning, transfer learning has been proposed where the potential of the pre-trained BERT (Bidirectional Encoder Representations from Transformers) model is utilized to solve the predator detection problem. BERT is mostly used to encode the textual information of a document into its context-aware mathematical representation. The inclusion of this pre-trained model solves two major problems, i.e. feature extraction and Out of Vocabulary (OOV) terms. The proposed system comprises two components: a pre-trained BERT model and a feed-forward neural network. To design the classification system with a pretrained BERT model, two approaches (feature-based and fine-tuning) have been used. Based on these approaches two solutions are proposed, namely, BERT_frozen and BERT_tuned where the latter approach is seen performing better than the existing classifiers in terms of F-1 and F-0.5- scores. en_US
dc.description.sponsorship European Research Consortium for Informatics and Mathematics (ERCIM) Alain Bensoussan Fellowship Program en_US
dc.description.sponsorship The work was supported by the European Research Consortium for Informatics and Mathematics (ERCIM) Alain Bensoussan Fellowship Program. en_US
dc.identifier.doi 10.1007/978-3-030-95467-3_35 en_US
dc.identifier.isbn 978-3-030-95467-3
dc.identifier.isbn 978-3-030-95466-6
dc.identifier.issn 0302-9743
dc.identifier.issn 1611-3349
dc.identifier.scopus 2-s2.0-85125286871 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-95467-3_35
dc.identifier.uri https://hdl.handle.net/20.500.12469/5533
dc.language.iso en en_US
dc.publisher Springer International Publishing Ag en_US
dc.relation.ispartof Machine Learning, Optimization, and Data Science (Lod 2021), Pt I en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Child grooming en_US
dc.subject Online sexual predators en_US
dc.subject Deep learning en_US
dc.subject Language modelling en_US
dc.subject BERT en_US
dc.title Predatory Conversation Detection Using Transfer Learning Approach en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id agarwal, Nancy/0000-0003-4392-0520
gdc.author.id Bours, Patrick/0000-0001-5562-6957
gdc.author.wosid Agarwal, Nancy/IWM-4866-2023
gdc.author.wosid Wani, Mudasir/GLR-9853-2022
gdc.author.wosid agarwal, Nancy/AAI-5508-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.departmenttemp [Agarwal, Nancy; Wani, Mudasir Ahmad; Bours, Patrick] Norwegian Univ Sci & Technol, Gjovik, Norway; [Unlu, Tugce] Kadir Has Univ, Istanbul, Turkey en_US
gdc.description.endpage 499 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 488 en_US
gdc.description.volume 13163 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4210513637
gdc.identifier.wos WOS:000772649400035 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.237345E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Online sexual predators
gdc.oaire.keywords Language modelling
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Child grooming
gdc.oaire.keywords BERT
gdc.oaire.popularity 8.057966E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 4.00837872
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 6
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 20
gdc.plumx.newscount 1
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.wos.citedcount 6
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5533.pdf
Size:
280.78 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text