Predatory Conversation Detection Using Transfer Learning Approach

dc.authoridagarwal, Nancy/0000-0003-4392-0520
dc.authoridBours, Patrick/0000-0001-5562-6957
dc.authorwosidAgarwal, Nancy/IWM-4866-2023
dc.authorwosidWani, Mudasir/GLR-9853-2022
dc.authorwosidagarwal, Nancy/AAI-5508-2021
dc.contributor.authorAgarwal, Nancy
dc.contributor.authorUnlu, Tugce
dc.contributor.authorWani, Mudasir Ahmad
dc.contributor.authorBours, Patrick
dc.date.accessioned2023-10-19T15:12:47Z
dc.date.available2023-10-19T15:12:47Z
dc.date.issued2022
dc.department-temp[Agarwal, Nancy; Wani, Mudasir Ahmad; Bours, Patrick] Norwegian Univ Sci & Technol, Gjovik, Norway; [Unlu, Tugce] Kadir Has Univ, Istanbul, Turkeyen_US
dc.description7th International Conference on Machine Learning, Optimization, and Data Science (LOD) / 1st Symposium on Artificial Intelligence and Neuroscience (ACAIN) -- OCT 04-08, 2021 -- ELECTR NETWORKen_US
dc.description.abstractPredatory conversation detection on social media can proactively prevent the netizens, including youngsters and children, from getting exploited by sexual predators. Earlier studies have majorly employed machine learning approaches such as Support Vector Machine (SVM) for detecting such conversations. Since deep learning frameworks have shown significant improvements in various text classification tasks, therefore, in this paper, we propose a deep learning-based classifier for detecting predatory conversations. Furthermore, instead of designing the system from the beginning, transfer learning has been proposed where the potential of the pre-trained BERT (Bidirectional Encoder Representations from Transformers) model is utilized to solve the predator detection problem. BERT is mostly used to encode the textual information of a document into its context-aware mathematical representation. The inclusion of this pre-trained model solves two major problems, i.e. feature extraction and Out of Vocabulary (OOV) terms. The proposed system comprises two components: a pre-trained BERT model and a feed-forward neural network. To design the classification system with a pretrained BERT model, two approaches (feature-based and fine-tuning) have been used. Based on these approaches two solutions are proposed, namely, BERT_frozen and BERT_tuned where the latter approach is seen performing better than the existing classifiers in terms of F-1 and F-0.5- scores.en_US
dc.description.sponsorshipEuropean Research Consortium for Informatics and Mathematics (ERCIM) Alain Bensoussan Fellowship Programen_US
dc.description.sponsorshipThe work was supported by the European Research Consortium for Informatics and Mathematics (ERCIM) Alain Bensoussan Fellowship Program.en_US
dc.identifier.citation3
dc.identifier.doi10.1007/978-3-030-95467-3_35en_US
dc.identifier.endpage499en_US
dc.identifier.isbn978-3-030-95467-3
dc.identifier.isbn978-3-030-95466-6
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85125286871en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage488en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-95467-3_35
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5533
dc.identifier.volume13163en_US
dc.identifier.wosWOS:000772649400035en_US
dc.identifier.wosqualityN/A
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofMachine Learning, Optimization, and Data Science (Lod 2021), Pt Ien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChild groomingen_US
dc.subjectOnline sexual predatorsen_US
dc.subjectDeep learningen_US
dc.subjectLanguage modellingen_US
dc.subjectBERTen_US
dc.titlePredatory Conversation Detection Using Transfer Learning Approachen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5533.pdf
Size:
280.78 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text