Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions

dc.contributor.author Ozbilge, E.
dc.contributor.author Demir, A.
dc.contributor.author Kanca, F.
dc.contributor.author Özbilge, E.
dc.date.accessioned 2023-10-19T15:05:21Z
dc.date.available 2023-10-19T15:05:21Z
dc.date.issued 2016
dc.description.abstract This article deals with the mathematical analysis of the inverse problem of identifying the distinguishability of input-output mappings in the linear time fractional inhomogeneous parabolic equation Dt ? u(x, t)=(k(x)ux)x+r(t)F(x, t) 0 < ? ? 1, with Dirichlet boundary conditions u(0, t) = ?0(t), u(1, t) = ?1(t). By defining the input-output mappings ?[·]: K ?C1[0,T ] and ?[·]: K ? C1[0,T] the inverse problem is reduced to the problem of their invertibility. Hence, the main purpose of this study is to investigate the distinguishability of the input-output mappings ?[·] and ?[·]. Moreover, the measured output data f (t) and h(t) can be determined analytically by a series representation, which implies that the input-output mappings ? [·] :K ? C1[0,T] and ?[·] :K ? C1[0,T] can be described explicitly. © 2016 NSP Natural Sciences Publishing Cor. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.18576/amis/100129 en_US
dc.identifier.issn 1935-0090
dc.identifier.issn 2325-0399
dc.identifier.scopus 2-s2.0-84959175835 en_US
dc.identifier.uri https://doi.org/10.18576/amis/100129
dc.identifier.uri https://hdl.handle.net/20.500.12469/4845
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Natural Sciences Publishing USA en_US
dc.relation.ispartof Applied Mathematics and Information Sciences en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Distinguishability en_US
dc.subject Fractional parabolic equation en_US
dc.subject Source function en_US
dc.title Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 15081438700
gdc.author.scopusid 56988688100
gdc.author.scopusid 37066259800
gdc.author.scopusid 57140492100
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp Ozbilge, E., Department of Mathematics, Faculty of Science and Literature, Izmir University of Economics, Sakarya Caddesi, No.156, Balcova - Izmir, 35330, Turkey; Demir, A., Department of Mathematics, Kocaeli University, Umuttepe, Izmit-Kocaeli, 41380, Turkey; Kanca, F., Department of Management Information Systems, Kadir Has University, Istanbul, 34083, Turkey; Özbilge, E., Intelligent Systems Research Centre, University of Ulster, Londonderry, United Kingdom en_US
gdc.description.endpage 289 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 283 en_US
gdc.description.volume 10 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2328684715
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.708084E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Fractional parabolic equation
gdc.oaire.keywords Source function
gdc.oaire.keywords Distinguishability
gdc.oaire.popularity 2.8427403E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.147
gdc.openalex.normalizedpercentile 0.47
gdc.opencitations.count 2
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4845.pdf
Size:
265.96 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text