Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions
| dc.contributor.author | Ozbilge, E. | |
| dc.contributor.author | Demir, A. | |
| dc.contributor.author | Kanca, F. | |
| dc.contributor.author | Özbilge, E. | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2023-10-19T15:05:21Z | |
| dc.date.available | 2023-10-19T15:05:21Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | This article deals with the mathematical analysis of the inverse problem of identifying the distinguishability of input-output mappings in the linear time fractional inhomogeneous parabolic equation Dt ? u(x, t)=(k(x)ux)x+r(t)F(x, t) 0 < ? ? 1, with Dirichlet boundary conditions u(0, t) = ?0(t), u(1, t) = ?1(t). By defining the input-output mappings ?[·]: K ?C1[0,T ] and ?[·]: K ? C1[0,T] the inverse problem is reduced to the problem of their invertibility. Hence, the main purpose of this study is to investigate the distinguishability of the input-output mappings ?[·] and ?[·]. Moreover, the measured output data f (t) and h(t) can be determined analytically by a series representation, which implies that the input-output mappings ? [·] :K ? C1[0,T] and ?[·] :K ? C1[0,T] can be described explicitly. © 2016 NSP Natural Sciences Publishing Cor. | en_US |
| dc.identifier.citationcount | 3 | |
| dc.identifier.doi | 10.18576/amis/100129 | en_US |
| dc.identifier.issn | 1935-0090 | |
| dc.identifier.issn | 2325-0399 | |
| dc.identifier.scopus | 2-s2.0-84959175835 | en_US |
| dc.identifier.uri | https://doi.org/10.18576/amis/100129 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/4845 | |
| dc.khas | 20231019-Scopus | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Natural Sciences Publishing USA | en_US |
| dc.relation.ispartof | Applied Mathematics and Information Sciences | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Distinguishability | en_US |
| dc.subject | Fractional parabolic equation | en_US |
| dc.subject | Source function | en_US |
| dc.title | Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 15081438700 | |
| gdc.author.scopusid | 56988688100 | |
| gdc.author.scopusid | 37066259800 | |
| gdc.author.scopusid | 57140492100 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.departmenttemp | Ozbilge, E., Department of Mathematics, Faculty of Science and Literature, Izmir University of Economics, Sakarya Caddesi, No.156, Balcova - Izmir, 35330, Turkey; Demir, A., Department of Mathematics, Kocaeli University, Umuttepe, Izmit-Kocaeli, 41380, Turkey; Kanca, F., Department of Management Information Systems, Kadir Has University, Istanbul, 34083, Turkey; Özbilge, E., Intelligent Systems Research Centre, University of Ulster, Londonderry, United Kingdom | en_US |
| gdc.description.endpage | 289 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 283 | en_US |
| gdc.description.volume | 10 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2328684715 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.708084E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Fractional parabolic equation | |
| gdc.oaire.keywords | Source function | |
| gdc.oaire.keywords | Distinguishability | |
| gdc.oaire.popularity | 2.8427403E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.147 | |
| gdc.openalex.normalizedpercentile | 0.47 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 4845.pdf
- Size:
- 265.96 KB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text