Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions

dc.contributor.author Ozbilge, E.
dc.contributor.author Demir, A.
dc.contributor.author Kanca, F.
dc.contributor.author Özbilge, E.
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:05:21Z
dc.date.available 2023-10-19T15:05:21Z
dc.date.issued 2016
dc.description.abstract This article deals with the mathematical analysis of the inverse problem of identifying the distinguishability of input-output mappings in the linear time fractional inhomogeneous parabolic equation Dt ? u(x, t)=(k(x)ux)x+r(t)F(x, t) 0 < ? ? 1, with Dirichlet boundary conditions u(0, t) = ?0(t), u(1, t) = ?1(t). By defining the input-output mappings ?[·]: K ?C1[0,T ] and ?[·]: K ? C1[0,T] the inverse problem is reduced to the problem of their invertibility. Hence, the main purpose of this study is to investigate the distinguishability of the input-output mappings ?[·] and ?[·]. Moreover, the measured output data f (t) and h(t) can be determined analytically by a series representation, which implies that the input-output mappings ? [·] :K ? C1[0,T] and ?[·] :K ? C1[0,T] can be described explicitly. © 2016 NSP Natural Sciences Publishing Cor. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.18576/amis/100129 en_US
dc.identifier.issn 1935-0090
dc.identifier.issn 2325-0399
dc.identifier.scopus 2-s2.0-84959175835 en_US
dc.identifier.uri https://doi.org/10.18576/amis/100129
dc.identifier.uri https://hdl.handle.net/20.500.12469/4845
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Natural Sciences Publishing USA en_US
dc.relation.ispartof Applied Mathematics and Information Sciences en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Distinguishability en_US
dc.subject Fractional parabolic equation en_US
dc.subject Source function en_US
dc.title Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 15081438700
gdc.author.scopusid 56988688100
gdc.author.scopusid 37066259800
gdc.author.scopusid 57140492100
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp Ozbilge, E., Department of Mathematics, Faculty of Science and Literature, Izmir University of Economics, Sakarya Caddesi, No.156, Balcova - Izmir, 35330, Turkey; Demir, A., Department of Mathematics, Kocaeli University, Umuttepe, Izmit-Kocaeli, 41380, Turkey; Kanca, F., Department of Management Information Systems, Kadir Has University, Istanbul, 34083, Turkey; Özbilge, E., Intelligent Systems Research Centre, University of Ulster, Londonderry, United Kingdom en_US
gdc.description.endpage 289 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 283 en_US
gdc.description.volume 10 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2328684715
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.708084E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Fractional parabolic equation
gdc.oaire.keywords Source function
gdc.oaire.keywords Distinguishability
gdc.oaire.popularity 2.8427403E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.147
gdc.openalex.normalizedpercentile 0.47
gdc.opencitations.count 2
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4845.pdf
Size:
265.96 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text