Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions

dc.authorscopusid 15081438700
dc.authorscopusid 56988688100
dc.authorscopusid 37066259800
dc.authorscopusid 57140492100
dc.contributor.author Ozbilge, E.
dc.contributor.author Demir, A.
dc.contributor.author Kanca, F.
dc.contributor.author Özbilge, E.
dc.date.accessioned 2023-10-19T15:05:21Z
dc.date.available 2023-10-19T15:05:21Z
dc.date.issued 2016
dc.department-temp Ozbilge, E., Department of Mathematics, Faculty of Science and Literature, Izmir University of Economics, Sakarya Caddesi, No.156, Balcova - Izmir, 35330, Turkey; Demir, A., Department of Mathematics, Kocaeli University, Umuttepe, Izmit-Kocaeli, 41380, Turkey; Kanca, F., Department of Management Information Systems, Kadir Has University, Istanbul, 34083, Turkey; Özbilge, E., Intelligent Systems Research Centre, University of Ulster, Londonderry, United Kingdom en_US
dc.description.abstract This article deals with the mathematical analysis of the inverse problem of identifying the distinguishability of input-output mappings in the linear time fractional inhomogeneous parabolic equation Dt ? u(x, t)=(k(x)ux)x+r(t)F(x, t) 0 < ? ? 1, with Dirichlet boundary conditions u(0, t) = ?0(t), u(1, t) = ?1(t). By defining the input-output mappings ?[·]: K ?C1[0,T ] and ?[·]: K ? C1[0,T] the inverse problem is reduced to the problem of their invertibility. Hence, the main purpose of this study is to investigate the distinguishability of the input-output mappings ?[·] and ?[·]. Moreover, the measured output data f (t) and h(t) can be determined analytically by a series representation, which implies that the input-output mappings ? [·] :K ? C1[0,T] and ?[·] :K ? C1[0,T] can be described explicitly. © 2016 NSP Natural Sciences Publishing Cor. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.18576/amis/100129 en_US
dc.identifier.endpage 289 en_US
dc.identifier.issn 1935-0090
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-84959175835 en_US
dc.identifier.scopusquality Q3
dc.identifier.startpage 283 en_US
dc.identifier.uri https://doi.org/10.18576/amis/100129
dc.identifier.uri https://hdl.handle.net/20.500.12469/4845
dc.identifier.volume 10 en_US
dc.identifier.wosquality N/A
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Natural Sciences Publishing USA en_US
dc.relation.ispartof Applied Mathematics and Information Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Distinguishability en_US
dc.subject Fractional parabolic equation en_US
dc.subject Source function en_US
dc.title Determination of the unknown source function in time fractional parabolic equation with Dirichlet boundary conditions en_US
dc.type Article en_US
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4845.pdf
Size:
265.96 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text