An advanced Grey Wolf Optimization Algorithm and its application to planning problem in smart grids

dc.authoridozdemir, aydogan/0000-0003-1331-2647
dc.authoridYounesi, Soheil/0000-0003-2170-857X
dc.authoridAhmadi, Bahman/0000-0002-1745-2228
dc.authorwosidozdemir, aydogan/A-2223-2016
dc.authorwosidAhmadi, Bahman/GSD-7380-2022
dc.contributor.authorCeylan, Oğuzhan
dc.contributor.authorYounesi, Soheil
dc.contributor.authorCeylan, Oguzhan
dc.contributor.authorOzdemir, Aydogan
dc.date.accessioned2023-10-19T15:12:35Z
dc.date.available2023-10-19T15:12:35Z
dc.date.issued2022
dc.department-temp[Ahmadi, Bahman; Younesi, Soheil; Ozdemir, Aydogan] Istanbul Tech Univ, Dept Elect Engn, Istanbul, Turkey; [Ceylan, Oguzhan] Kadir Has Univ, Management & Informat Syst Dept, Istanbul, Turkey; [Ceylan, Oguzhan] Marmara Univ, Dept Elect & Elect Engn, Istanbul, Turkeyen_US
dc.description.abstractDue to the complex mathematical structures of the models in engineering, heuristic methods which do not require derivative are developed. This paper improves recently developed Grey Wolf Optimization Algorithm by extending it with three new features: namely presenting a new formulation for evaluating the positions of search agents, applying mirroring distance to the variables violating the limits, and proposing a dynamic decision approach for each agent either in exploration or exploitation phases. The performance of Advanced Grey Wolf Optimization (AGWO) method is tested using several optimization test functions and compared to several heuristic algorithms. Moreover, a planning problem in smart grids is solved by considering different objective functions using 33 and 141 bus distribution test systems. From the numerical simulation results, we observe that, AGWO is able to find the best results compared to other methods from 10 and 9 out of 13 test functions for 30 and 60 variables, respectively. Similar to this, it finds best function values for 5 out of 10 fixed number of variable test functions. Also, the result of the CEC-C06 2019 benchmark functions shows that AGWO outperforms 8 for optimization problems from 10. In power distribution system planning problem, better objective function values were determined by using AGWO, resulting a better voltage profile, less losses, and less emission costs compared to solutions obtained by Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) algorithms.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey TUBITAK [117E773]en_US
dc.description.sponsorshipThis research is funded as a part of 117E773 Advanced Evolutionary Computation for Smart Grid and Smart Community project under the framework of 1001 Project organized by The Scientific and Technological Research Council of Turkey TUBITAK.en_US
dc.identifier.citation11
dc.identifier.doi10.1007/s00500-022-06767-9en_US
dc.identifier.endpage3808en_US
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85123995376en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage3789en_US
dc.identifier.urihttps://doi.org/10.1007/s00500-022-06767-9
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5486
dc.identifier.volume26en_US
dc.identifier.wosWOS:000749389800001en_US
dc.identifier.wosqualityQ2
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSoft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributed GenerationEn_Us
dc.subjectDistribution-SystemsEn_Us
dc.subjectOptimal AllocationEn_Us
dc.subjectOptimal PlacementEn_Us
dc.subjectBat AlgorithmEn_Us
dc.subjectReanalysisEn_Us
dc.subjectCapacitorsEn_Us
dc.subjectDistributed Generation
dc.subjectDistribution-Systems
dc.subjectOptimal Allocation
dc.subjectOptimal Placement
dc.subjectOptimization algorithmen_US
dc.subjectBat Algorithm
dc.subjectEvolutionary computationen_US
dc.subjectReanalysis
dc.subjectSmart grid applicationsen_US
dc.subjectCapacitors
dc.subjectRenewable energy integrationen_US
dc.titleAn advanced Grey Wolf Optimization Algorithm and its application to planning problem in smart gridsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5486.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text