Support vector machines based target tracking techniques [Destek vektör makineleri tabanlı hedef takip yöntemleri]

dc.contributor.authorÖzer, Sedat
dc.contributor.authorCirpan, Hakan Ali
dc.contributor.authorKabaoğlu, Nihat
dc.date.accessioned2019-06-28T11:11:38Z
dc.date.available2019-06-28T11:11:38Z
dc.date.issued2006
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentYüksekokullar, Teknik Bilimler Meslek Yüksekokuluen_US
dc.description.abstractThis paper addresses the problem of aplying powerful statistical pattern classification algorithms based on kernels to target tracking. Rather than directly adapting a recognizer we develop a localizer directly using the regression form of the Support Vector Machines (SVM). The proposed approach considers using dynamic model together as feature vectors and makes the hyperplane and the support vectors follow the changes in these features. The performance of the tracker is demostrated in a sensor network scenario with a moving target in a polynomial route. © 2006 IEEE.en_US]
dc.identifier.citation1
dc.identifier.doi10.1109/SIU.2006.1659718en_US
dc.identifier.isbn1424402395
dc.identifier.isbn9781424402397
dc.identifier.scopus2-s2.0-34247127418en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12469/1650
dc.identifier.urihttps://doi.org/10.1109/SIU.2006.1659718
dc.identifier.volume2006en_US
dc.identifier.wosqualityN/A
dc.institutionauthorKabaoğlu, Nihaten_US
dc.language.isotren_US
dc.relation.journal2006 IEEE 14th Signal Processing and Communications Applications Conferenceen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleSupport vector machines based target tracking techniques [Destek vektör makineleri tabanlı hedef takip yöntemleri]en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Support vector machines based target tracking techniques.pdf
Size:
688.48 KB
Format:
Adobe Portable Document Format
Description: