The Effect of Data Augmentation on Adhd Diagnostic Model Using Deep Learning

dc.authorscopusid57211992616
dc.authorscopusid55364715200
dc.authorscopusid35617283100
dc.contributor.authorCicek, G.
dc.contributor.authorOzmen, A.
dc.contributor.authorAkan, A.
dc.date.accessioned2023-10-19T15:05:32Z
dc.date.available2023-10-19T15:05:32Z
dc.date.issued2019
dc.department-tempCicek, G., IÜ-CerrahpaşaBeykent Üniversitesi, Biyomedikal Yazilim Muhendisli?i Bölümü, Istanbul, Turkey; Ozmen, A., Kadir Has Üniversitesi, Elektrik-Elektronik Mühendisli?i Bölümü, Istanbul, Turkey; Akan, A., Izmir Katip Çelebi Üniversitesi, Biyomedikal Mühendisli?i Bölümü, Izmir, Turkeyen_US
dc.description2019 Medical Technologies Congress, TIPTEKNO 2019 --3 October 2019 through 5 October 2019 -- --154293en_US
dc.description.abstractAttention Deficit Hyperactivity Disorder (ADHD) is a neuro-behavioral hyperactivity disorder. It is frequently seen in childhood and youth, and lasts a lifetime unless treated. The ADHD classification model should be objective and robust. Correct diagnosis usually depends on the knowledge and experience of health professionals. In this respect, an automated method to be developed for the ADHD classification model is of great importance for clinicians. In this study, the effect of data augmentation on ADHD classification model with deep learning was investigated. For this purpose, magnetic resonance images were taken from NPIstanbul NeuroPsychiatry Hospital and ADHD-200 database. Since the images were not sufficient in terms of training, data augmentation methods were applied and by convolutional neural network (CNN) architecture, these data were classified and tried to reveal the diagnosis of the disease independently from the non-objective experiences of the health professionals. © 2019 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/TIPTEKNO.2019.8895056en_US
dc.identifier.isbn9781728124209
dc.identifier.scopus2-s2.0-85075603587en_US
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO.2019.8895056
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4936
dc.institutionauthorÖzmen, Atilla
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2019 - Tip Teknolojileri Kongresien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention deficit hyperactivitiy disorderen_US
dc.subjectClassificationen_US
dc.subjectConvolutional neural networken_US
dc.subjectOnline data augmentationen_US
dc.subjectBiomedical engineeringen_US
dc.subjectClassification (of information)en_US
dc.subjectConvolutionen_US
dc.subjectDiagnosisen_US
dc.subjectMagnetic resonanceen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectNeural networksen_US
dc.subjectAttention deficiten_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectClassification modelsen_US
dc.subjectConvolutional neural networken_US
dc.subjectHealth professionalsen_US
dc.subjectHyperactivity disorderen_US
dc.subjectKnowledge and experienceen_US
dc.subjectOnline dataen_US
dc.subjectDeep learningen_US
dc.titleThe Effect of Data Augmentation on Adhd Diagnostic Model Using Deep Learningen_US
dc.title.alternativeDerin Ö?renmeyi Kullanarak Veri Artiriminin Dehb Tani Modeline Etkisien_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationcf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscoverycf8f9e05-3f89-4ab6-af78-d0937210fb77

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4937.pdf
Size:
685.83 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text