Design and analysis of a fault tolerance nano-scale code converter based on quantum-dots

dc.authorscopusid55110006500
dc.authorscopusid59269718200
dc.authorscopusid59125628000
dc.authorwosidXie, Changgui/KUC-7179-2024
dc.contributor.authorXie, Changgui
dc.contributor.authorZhao, Xin
dc.contributor.authorNavimipour, Nima Jafari
dc.date.accessioned2024-10-15T19:40:05Z
dc.date.available2024-10-15T19:40:05Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Xie, Changgui] Chongqing Vocat Inst Engn, Sch Intelligent Mfg & Transportat, Chongqing 402260, Peoples R China; [Zhao, Xin] Chongqing Technol & Business Univ, Sch Comp Sci & Informat Engn, Chongqing, Peoples R China; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Yunlin 64002, Taiwan; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Western Caspian Univ, Res Ctr High Technol & Innovat Engn, Baku, Azerbaijanen_US
dc.description.abstractQuantum-dot cellular automata (QCA), QCA ), a nano-scale computer framework, is developing as a potential alternative to current transistor-based technologies. However, it is susceptible to a variety of fabrication-related errors and process variances because it is a novel technology. As a result, QCA-based circuits pose reliability-related problems since they are prone to faults. To address the dependability challenges, it is becoming increasingly necessary to create fault-tolerance QCA-based circuits. On the other hand, the applications of code converters in digital systems are essential for rapid signal processing. Using fault-tolerance XOR and multiplexer, this research suggests a nano-based binary-to-gray and gray-to-binary code converter circuit in a single layer to increase efficiency and reduce complexity. The fault-tolerance performance of the suggested circuits against cell omission, misalignment, displacement, and extra cell deposition faults has significantly improved. Concerning the generalized design metrics of QCA circuits, the fault-tolerance designs have been contrasted with the existing structures. The proposed fault-tolerance circuits' energy dissipation findings have been calculated using the precise QCADesigner-E power estimator tool. Using the QCADesigner-E program, the proposed circuits' functionality has been confirmed. The results implied the high efficiency and applicability of the proposed designs.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.nancom.2024.100530
dc.identifier.issn1878-7789
dc.identifier.issn1878-7797
dc.identifier.scopus2-s2.0-85201494824
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.nancom.2024.100530
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6347
dc.identifier.volume42en_US
dc.identifier.wosWOS:001299194400001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNano-technologyen_US
dc.subjectNano-computersen_US
dc.subjectQCADesigner-Een_US
dc.subjectBinary to grayen_US
dc.subjectGray to binaryen_US
dc.subjectFault-toleranceen_US
dc.subjectQCA circuitsen_US
dc.titleDesign and analysis of a fault tolerance nano-scale code converter based on quantum-dotsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files