Automatic Adaptation of Hypermutation Rates for Multimodal Optimisation

dc.contributor.author Çörüş, Doğan
dc.contributor.author Oliveto, Pietro S.
dc.contributor.author Yazdani, Donya
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:11:33Z
dc.date.available 2023-10-19T15:11:33Z
dc.date.issued 2021
dc.department-temp [Corus, Dogan] Kadir Has Univ, Istanbul, Turkey; [Oliveto, Pietro S.] Univ Sheffield, Sheffield, S Yorkshire, England; [Yazdani, Donya] Aberystwyth Univ, Aberystwyth, Dyfed, Wales en_US
dc.description 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA) -- SEP 06-08, 2021 -- Vorarlberg Univ Appl Sci, ELECTR NETWORK en_US
dc.description.abstract Previous work has shown that in Artificial Immune Systems (AIS) the best static mutation rates to escape local optima with the ageing operator are far from the optimal ones to do so via large hypermutations and vice-versa. In this paper we propose an AIS that automatically adapts the mutation rate during the run to make good use of both operators. We perform rigorous time complexity analyses for standard multimodal benchmark functions with significant characteristics and prove that our proposed algorithm can learn to adapt the mutation rate appropriately such that both ageing and hypermutation are effective when they are most useful for escaping local optima. In particular, the algorithm provably adapts the mutation rate such that it is efficient for the problems where either operator has been proven to be effective in the literature. en_US
dc.description.sponsorship Assoc Comp Machinery,ACM SIGEVO en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1145/3450218.3477305 en_US
dc.identifier.isbn 978-1-4503-8352-3
dc.identifier.scopus 2-s2.0-85114941882 en_US
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1145/3450218.3477305
dc.identifier.uri https://hdl.handle.net/20.500.12469/5086
dc.identifier.wos WOS:000748910300004 en_US
dc.identifier.wosquality N/A
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Assoc Computing Machinery en_US
dc.relation.ispartof Proceedings of The 16th Acm/Sigevo Conference on Foundations of Genetic Algorithms (Foga'21) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 11
dc.subject Genetic Algorithms En_Us
dc.subject Search En_Us
dc.subject randomized search heuristics en_US
dc.subject artificial immune systems en_US
dc.subject evolutionary algorithms en_US
dc.subject Approximations En_Us
dc.subject hypermutations en_US
dc.subject ageing en_US
dc.subject Genetic Algorithms
dc.subject multimodal optimization en_US
dc.subject Search
dc.subject parameter adaptation en_US
dc.subject Approximations
dc.subject runtime analysis en_US
dc.title Automatic Adaptation of Hypermutation Rates for Multimodal Optimisation en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 10
dspace.entity.type Publication
relation.isAuthorOfPublication 7342534c-06be-40f2-9933-f1249a97ad3a
relation.isAuthorOfPublication.latestForDiscovery 7342534c-06be-40f2-9933-f1249a97ad3a
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5086.pdf
Size:
715.07 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text