Optimization of Multilevel Inverters Using Novelty-driven Multi-verse Optimization Algorithm

dc.authoridMirjalili, Seyedali/0000-0002-1443-9458
dc.authorwosidMirjalili, Seyedali/P-1372-2018
dc.contributor.authorCeylan, Oğuzhan
dc.contributor.authorNeshat, Mehdi
dc.contributor.authorMirjalili, Seyedali
dc.date.accessioned2023-10-19T15:11:50Z
dc.date.available2023-10-19T15:11:50Z
dc.date.issued2021
dc.department-temp[Ceylan, Oguzhan] Kadir Has Univ, Management Informat Syst, Istanbul, Turkey; [Neshat, Mehdi; Mirjalili, Seyedali] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Brisbane, Qld 4006, Australiaen_US
dc.description56th International Universities Power Engineering Conference (UPEC) - Powering Net Zero Emissions -- AUG 31-SEP 03, 2021 -- Teesside Univ, ELECTR NETWORKen_US
dc.description.abstractAll over the world, renewable energy technologies which need power electronics based inverters in their designs are becoming more and more popular, thus detailed analysis to test the operational efficiency is required. This paper utilizes a new adaptive Multi-verse Optimization (MVO) Algorithm combined with novelty search method to solve harmonic elimination problem in multilevel inverters. We compare the obtained numerical simulations to those obtained by using the grey wolf optimization and standard MVO algorithm. The numerical simulations are performed on 7, 11, and 15 level inverters with different modulation indexes. From the simulation results, we observe that adaptive novelty search Multi-verse Optimization (MVO) based approach was able to obtain less total harmonic distortion for different modulation indexes.en_US
dc.description.sponsorshipIEEE,IEEE United Kingdom & Ireland Sect,IEEE Power & Energy Soc,Inst Engn & Technol,Lucas Nulle,MDPI, Elect Journal,MDPI, Energies Journalen_US
dc.identifier.citation0
dc.identifier.doi10.1109/UPEC50034.2021.9548192en_US
dc.identifier.isbn978-1-6654-4389-0
dc.identifier.scopus2-s2.0-85116668812en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/UPEC50034.2021.9548192
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5240
dc.identifier.wosWOS:000723608400042en_US
dc.identifier.wosqualityN/A
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 56th International Universities Power Engineering Conference (Upec 2021): Powering Net Zero Emissionsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmultilevel invertersen_US
dc.subjectselective harmonic eliminationen_US
dc.subjectharmonic distortionen_US
dc.subjectoptimizationen_US
dc.subjectMulti-verse Optimizationen_US
dc.subjectNovelty searchen_US
dc.subjectlocal searchen_US
dc.titleOptimization of Multilevel Inverters Using Novelty-driven Multi-verse Optimization Algorithmen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5240.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text