An Adaptive Affinity Matrix Optimization for Locality Preserving Projection Via Heuristic Methods for Hyperspectral Image Analysis

gdc.relation.journal IEEE Journal of Selected Topıcs in Applıed Earth Observatıons and Remote Sensıng en_US
dc.contributor.author Taşkın, Gülşen
dc.contributor.author Ceylan, Oğuzhan
dc.date.accessioned 2020-12-12T09:22:46Z
dc.date.available 2020-12-12T09:22:46Z
dc.date.issued 2019
dc.description.abstract Locality preserving projection (LPP) has been often used as a dimensionality reduction tool for hyperspectral image analysis especially in the context of classification since it provides a projection matrix for embedding test samples to low dimensional space. However, the performance of LPP heavily depends on the optimization of two parameters of the graph affinity matrix: k-nearest neighbor and heat kernel width, when one considers an isotropic kernel. These two parameters might be optimally chosen simply based on a grid search. In case of using a generalized heat kernel where each feature is separately weighted by a kernel width, the number of parameters that need to be optimized is related to the number of features of the dataset, which might not be very easy to tune. Therefore, in this article, we propose to use heuristic methods, including genetic algorithm (GA), harmony search (HS), and particle swarm optimization (PSO), to explore the effects of the heat kernel parameters aiming to analyze the embedding quality of LPP's projection in terms of various aspects, including 1-NN classification accuracy, locality preserving power, and quality of the graph affinity matrix. The results obtained with the experiments on three hyperspectral datasets show that HS performs better than GA and PSO in optimizing the parameters of the affinity matrix, and the generalized heat kernel achieves better performance than the isotropic kernel. Additionally, a feature selection application is performed by using the kernel width of the generalized heat kernel for each heuristic method. The results show that very promising results are obtained in comparison with the state-of-the-art feature selection methods. en_US
dc.description.sponsorship Tubitak en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1109/JSTARS.2019.2947355 en_US
dc.identifier.issn 1939-1404 en_US
dc.identifier.issn 2151-1535 en_US
dc.identifier.issn 1939-1404
dc.identifier.issn 2151-1535
dc.identifier.scopus 2-s2.0-85079348756 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3518
dc.identifier.uri https://doi.org/10.1109/JSTARS.2019.2947355
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrıcal Electronıcs Engıneers Inc en_US
dc.relation.ispartof IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dimensionality reduction' en_US
dc.subject Genetic algorithms en_US
dc.subject Particle swarm optimization en_US
dc.subject Feature extraction en_US
dc.subject Optimization en_US
dc.subject Dimensionality reduction en_US
dc.subject Genetic algorithm en_US
dc.subject Harmony search en_US
dc.subject Manifold learning en_US
dc.subject Particle swarm optimization en_US
dc.title An Adaptive Affinity Matrix Optimization for Locality Preserving Projection Via Heuristic Methods for Hyperspectral Image Analysis en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ceylan, Oğuzhan en_US
gdc.author.institutional Ceylan, Oğuzhan
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
gdc.description.endpage 4697 en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 4690 en_US
gdc.description.volume 12 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2996075303
gdc.identifier.wos WOS:000515698700001 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.9298324E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Optimization
gdc.oaire.keywords Manifold learning
gdc.oaire.keywords Genetic algorithm
gdc.oaire.keywords Particle swarm optimization
gdc.oaire.keywords Dimensionality reduction'
gdc.oaire.keywords Feature extraction
gdc.oaire.keywords Harmony search
gdc.oaire.keywords Genetic algorithms
gdc.oaire.keywords Dimensionality reduction
gdc.oaire.popularity 8.98518E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.fwci 0.982
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 9
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 6
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files