Multimodal Retrieval With Contrastive Pretraining

dc.authorscopusid 55364564400
dc.authorscopusid 57289197300
dc.authorscopusid 57288694000
dc.authorscopusid 58353740700
dc.authorscopusid 6506505859
dc.contributor.author Alsan, H.F.
dc.contributor.author Arsan, Taner
dc.contributor.author Yildiz, E.
dc.contributor.author Safdil, E.B.
dc.contributor.author Arslan, F.
dc.contributor.author Arsan, T.
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:05:32Z
dc.date.available 2023-10-19T15:05:32Z
dc.date.issued 2021
dc.department-temp Alsan, H.F., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Yildiz, E., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Safdil, E.B., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Arslan, F., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Arsan, T., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey en_US
dc.description Kocaeli University;Kocaeli University Technopark en_US
dc.description 2021 International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2021 --25 August 2021 through 27 August 2021 -- --172175 en_US
dc.description.abstract In this paper, we present multimodal data retrieval aided with contrastive pretraining. Our approach is to pretrain a contrastive network to assist in multimodal retrieval tasks. We work with multimodal data, which has image and caption (text) pairs. We present a dual encoder deep neural network with the image and text encoder to encode multimodal data (images and text) to represent vectors. These representation vectors are used for similarity-based retrieval. Image encoder is a 2D convolutional network, and text encoder is a recurrent neural network (Long-Short Term Memory). MS-COCO 2014 dataset has both images and captions, and it is used for multimodal training with triplet loss. We used a convolutional Siamese network to compute the similarities between images before the dual encoder training (contrastive pretraining). The advantage is that Siamese networks can aid the retrieval, and we seek to show if Siamese networks can be used in practice. Finally, we investigated the performance of Siamese assisted retrieval with BLEU score metric. We conclude that Siamese can help with image-to-text retrieval tasks. © 2021 IEEE. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/INISTA52262.2021.9548414 en_US
dc.identifier.isbn 9781665436038
dc.identifier.scopus 2-s2.0-85116673208 en_US
dc.identifier.uri https://doi.org/10.1109/INISTA52262.2021.9548414
dc.identifier.uri https://hdl.handle.net/20.500.12469/4941
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2021 International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2021 - Proceedings en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Convolutional Networks en_US
dc.subject Deep Learning en_US
dc.subject Long-Short Term Memory (LSTM) en_US
dc.subject Multimodal Data en_US
dc.subject Pretraining en_US
dc.subject Siamese networks en_US
dc.subject Triplet loss en_US
dc.subject Brain en_US
dc.subject Computer vision en_US
dc.subject Convolution en_US
dc.subject Convolutional neural networks en_US
dc.subject Deep neural networks en_US
dc.subject Network coding en_US
dc.subject Convolutional networks en_US
dc.subject Data retrieval en_US
dc.subject Deep learning en_US
dc.subject Image texts en_US
dc.subject Long-short term memory en_US
dc.subject Multi-modal en_US
dc.subject Multi-modal data en_US
dc.subject Pre-training en_US
dc.subject Siamese network en_US
dc.subject Triplet loss en_US
dc.subject Long short-term memory en_US
dc.title Multimodal Retrieval With Contrastive Pretraining en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4941.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text