Residual Lstm Neural Network for Time Dependent Consecutive Pitch String Recognition From Spectrograms: a Study on Turkish Classical Music Makams

dc.authorid MIRZA, FUAT KAAN/0000-0002-7664-0632
dc.authorid Baykas, Tuncer/0000-0001-9535-2102
dc.authorid PEKCAN, Onder/0000-0002-0082-8209
dc.authorscopusid 58641292900
dc.authorscopusid 58642203200
dc.authorscopusid 24328990900
dc.authorscopusid 57193505462
dc.authorscopusid 35479982700
dc.authorwosid MIRZA, FUAT KAAN/JJC-1595-2023
dc.authorwosid PEKCAN, Onder/Y-3158-2018
dc.contributor.author Mirza, Fuat Kaan
dc.contributor.author Baykaş, Tunçer
dc.contributor.author Gursoy, Ahmet Fazil
dc.contributor.author Hekimoğlu, Mustafa
dc.contributor.author Baykas, Tuncer
dc.contributor.author Pekcan, Mehmet Önder
dc.contributor.author Hekimoglu, Mustafa
dc.contributor.author Pekcan, Onder
dc.contributor.other Industrial Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other Molecular Biology and Genetics
dc.date.accessioned 2024-06-23T21:38:25Z
dc.date.available 2024-06-23T21:38:25Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp [Mirza, Fuat Kaan; Gursoy, Ahmet Fazil; Baykas, Tuncer; Hekimoglu, Mustafa; Pekcan, Onder] Kadir Has Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description MIRZA, FUAT KAAN/0000-0002-7664-0632; Baykas, Tuncer/0000-0001-9535-2102; PEKCAN, Onder/0000-0002-0082-8209 en_US
dc.description.abstract Turkish classical music, characterized by 'makam', specific melodic configurations delineated by sequential pitches and intervals, is rich in cultural significance and poses a considerable challenge in identifying a musical piece's particular makam. This identification complexity remains an issue even for experienced musical experts, emphasizing the need for automated and accurate classification techniques. In response, we introduce a residual LSTM neural network model that classifies makams by leveraging the distinct sequential pitch patterns discerned within various audio segments over spectrogram-based inputs. This model's design uniquely merges the spatial capabilities of two-dimensional convolutional layers with the temporal understanding of one-dimensional convolutional and LSTM mechanisms embedded within a residual framework. Such an integrated approach allows for detailed temporal analysis of shifting frequencies, as revealed in logarithmically scaled spectrograms, and is adept at recognizing consecutive pitch patterns within segments. Employing stratified cross-validation on a comprehensive dataset encompassing 1154 pieces spanning 15 unique makams, we found that our model demonstrated an accuracy of 95.60% for a subset of 9 makams and 89.09% for all 15 makams. Our approach demonstrated consistent precision even when distinguishing makam pairs known for their closely related pitch sequences. To further validate our model's prowess, we conducted benchmark tests against established methodologies found in current literature, providing a comparative assessment of our proposed workflow's abilities. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s11042-023-17105-y
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85173860706
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s11042-023-17105-y
dc.identifier.uri https://hdl.handle.net/20.500.12469/5797
dc.identifier.wos WOS:001083978800026
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Musical information retrieval en_US
dc.subject Pitch sequence recognition en_US
dc.subject Modal music en_US
dc.subject Spectrogram en_US
dc.subject Residual LSTM neural network en_US
dc.title Residual Lstm Neural Network for Time Dependent Consecutive Pitch String Recognition From Spectrograms: a Study on Turkish Classical Music Makams en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication 533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication e5459272-ce6e-44cf-a186-293850946f24
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files