Residual Lstm Neural Network for Time Dependent Consecutive Pitch String Recognition From Spectrograms: a Study on Turkish Classical Music Makams

dc.contributor.author Mirza, Fuat Kaan
dc.contributor.author Gursoy, Ahmet Fazil
dc.contributor.author Baykas, Tuncer
dc.contributor.author Hekimoglu, Mustafa
dc.contributor.author Pekcan, Onder
dc.contributor.other Industrial Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other Molecular Biology and Genetics
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:38:25Z
dc.date.available 2024-06-23T21:38:25Z
dc.date.issued 2023
dc.description MIRZA, FUAT KAAN/0000-0002-7664-0632; Baykas, Tuncer/0000-0001-9535-2102; PEKCAN, Onder/0000-0002-0082-8209 en_US
dc.description.abstract Turkish classical music, characterized by 'makam', specific melodic configurations delineated by sequential pitches and intervals, is rich in cultural significance and poses a considerable challenge in identifying a musical piece's particular makam. This identification complexity remains an issue even for experienced musical experts, emphasizing the need for automated and accurate classification techniques. In response, we introduce a residual LSTM neural network model that classifies makams by leveraging the distinct sequential pitch patterns discerned within various audio segments over spectrogram-based inputs. This model's design uniquely merges the spatial capabilities of two-dimensional convolutional layers with the temporal understanding of one-dimensional convolutional and LSTM mechanisms embedded within a residual framework. Such an integrated approach allows for detailed temporal analysis of shifting frequencies, as revealed in logarithmically scaled spectrograms, and is adept at recognizing consecutive pitch patterns within segments. Employing stratified cross-validation on a comprehensive dataset encompassing 1154 pieces spanning 15 unique makams, we found that our model demonstrated an accuracy of 95.60% for a subset of 9 makams and 89.09% for all 15 makams. Our approach demonstrated consistent precision even when distinguishing makam pairs known for their closely related pitch sequences. To further validate our model's prowess, we conducted benchmark tests against established methodologies found in current literature, providing a comparative assessment of our proposed workflow's abilities. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s11042-023-17105-y
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85173860706
dc.identifier.uri https://doi.org/10.1007/s11042-023-17105-y
dc.identifier.uri https://hdl.handle.net/20.500.12469/5797
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Multimedia Tools and Applications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Musical information retrieval en_US
dc.subject Pitch sequence recognition en_US
dc.subject Modal music en_US
dc.subject Spectrogram en_US
dc.subject Residual LSTM neural network en_US
dc.title Residual Lstm Neural Network for Time Dependent Consecutive Pitch String Recognition From Spectrograms: a Study on Turkish Classical Music Makams en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id MIRZA, FUAT KAAN/0000-0002-7664-0632
gdc.author.id Baykas, Tuncer/0000-0001-9535-2102
gdc.author.id PEKCAN, Onder/0000-0002-0082-8209
gdc.author.institutional Baykaş, Tunçer
gdc.author.institutional Hekimoğlu, Mustafa
gdc.author.institutional Pekcan, Mehmet Önder
gdc.author.scopusid 58641292900
gdc.author.scopusid 58642203200
gdc.author.scopusid 24328990900
gdc.author.scopusid 57193505462
gdc.author.scopusid 35479982700
gdc.author.wosid MIRZA, FUAT KAAN/JJC-1595-2023
gdc.author.wosid PEKCAN, Onder/Y-3158-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Mirza, Fuat Kaan; Gursoy, Ahmet Fazil; Baykas, Tuncer; Hekimoglu, Mustafa; Pekcan, Onder] Kadir Has Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
gdc.description.endpage 41271
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 41243
gdc.description.volume 83
gdc.identifier.openalex W4387535246
gdc.identifier.wos WOS:001083978800026
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.817247E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.3877404E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 2.267
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 0
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 8
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication 533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication e5459272-ce6e-44cf-a186-293850946f24
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files