Anomalyadapters: Parameter-Efficient Multi-Anomaly Task Detection

dc.contributor.author Unal, Ugur
dc.contributor.author Dag, Hasan
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:11:53Z
dc.date.available 2023-10-19T15:11:53Z
dc.date.issued 2022
dc.description.abstract The emergence of technological innovations brings sophisticated threats. Cyberattacks are increasing day by day aligned with these innovations and entails rapid solutions for defense mechanisms. These attacks may hinder enterprise operations or more importantly, interrupt critical infrastructure systems, that are essential to safety, security, and well-being of a society. Anomaly detection, as a protection step, is significant for ensuring a system security. Logs, which are accepted sources universally, are utilized in system health monitoring and intrusion detection systems. Recent developments in Natural Language Processing (NLP) studies show that contextual information decreases false-positives yield in detecting anomalous behaviors. Transformers and their adaptations to various language understanding tasks exemplify the enhanced ability to extract this information. Deep network based anomaly detection solutions use generally feature-based transfer learning methods. This type of learning presents a new set of weights for each log type. It is unfeasible and a redundant way considering various log sources. Also, a vague representation of model decisions prevents learning from threat data and improving model capability. In this paper, we propose AnomalyAdapters (AAs) which is an extensible multi-anomaly task detection model. It uses pretrained transformers' variant to encode a log sequences and utilizes adapters to learn a log structure and anomaly types. Adapter-based approach collects contextual information, eliminates information loss in learning, and learns anomaly detection tasks from different log sources without overuse of parameters. Lastly, our work elucidates the decision making process of the proposed model on different log datasets to emphasize extraction of threat data via explainability experiments. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [120E487] en_US
dc.description.sponsorship This work was supported in part by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 120E487. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1109/ACCESS.2022.3141161 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85122849406 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2022.3141161
dc.identifier.uri https://hdl.handle.net/20.500.12469/5266
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof Ieee Access en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Task analysis en_US
dc.subject Anomaly detection en_US
dc.subject Adaptation models en_US
dc.subject Transformers en_US
dc.subject Security en_US
dc.subject Semantics en_US
dc.subject Monitoring en_US
dc.subject Anomaly detection en_US
dc.subject adapters en_US
dc.subject cyber threat intelligence en_US
dc.subject explainability en_US
dc.subject log en_US
dc.subject transfer learning en_US
dc.title Anomalyadapters: Parameter-Efficient Multi-Anomaly Task Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Unal, Ugur/0000-0001-6552-6044
gdc.author.id DAG, HASAN/0000-0001-6252-1870
gdc.author.institutional Dağ, Hasan
gdc.author.wosid DAG, HASAN/T-5301-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Unal, Ugur; Dag, Hasan] Kadir Has Univ, Management Informat Syst, TR-34083 Istanbul, Turkey en_US
gdc.description.endpage 5646 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5635 en_US
gdc.description.volume 10 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4205434581
gdc.identifier.wos WOS:000744487400001 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.911565E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Monitoring
gdc.oaire.keywords Adaptation models
gdc.oaire.keywords Anomaly detection
gdc.oaire.keywords transfer learning
gdc.oaire.keywords Semantics
gdc.oaire.keywords TK1-9971
gdc.oaire.keywords cyber threat intelligence
gdc.oaire.keywords Transformers
gdc.oaire.keywords adapters
gdc.oaire.keywords explainability
gdc.oaire.keywords Task analysis
gdc.oaire.keywords Security
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords log
gdc.oaire.popularity 7.0230746E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.fwci 1.915
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 6
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 48
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 8
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5266.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text