Optimizing Exoskeleton Design with Evolutionary Computation: An Intensive Survey

dc.contributor.author Stroppa, Fabıo
dc.contributor.author Saraç Stroppa, Mine
dc.contributor.author Yuksel, Huseyin Taner
dc.contributor.author Akbas, Baris
dc.contributor.author Sarac, Mine
dc.contributor.other Mechatronics Engineering
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:12:06Z
dc.date.available 2023-10-19T15:12:06Z
dc.date.issued 2023
dc.department-temp [Stroppa, Fabio; Soylemez, Aleyna; Yuksel, Huseyin Taner; Akbas, Baris] Kadir Has Univ, Dept Comp Engn, TR-34083 Istanbul, Turkiye; [Sarac, Mine] Kadir Has Univ, Dept Mechatron Engn, TR-34083 Istanbul, Turkiye en_US
dc.description.abstract Exoskeleton devices are designed for applications such as rehabilitation, assistance, and haptics. Due to the nature of physical human-machine interaction, designing and operating these devices is quite challenging. Optimization methods lessen the severity of these challenges and help designers develop the device they need. In this paper, we present an extensive and systematic literature search on the optimization methods used for the mechanical design of exoskeletons. We completed the search in the IEEE, ACM, and MDPI databases between 2017 and 2023 using the keywords exoskeleton, design, and optimization. We categorized our findings in terms of which limb (i.e., hand, wrist, arm, or leg) and application (assistive, rehabilitation, or haptic) the exoskeleton was designed for, the optimization metrics (force transmission, workspace, size, and adjustability/calibration), and the optimization method (categorized as evolutionary computation or non-evolutionary computation methods). We discuss our observations with respect to how the optimization methods have been implemented based on our findings. We conclude our paper with suggestions for future research. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.3390/robotics12040106 en_US
dc.identifier.issn 2218-6581
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85169095045 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.3390/robotics12040106
dc.identifier.uri https://hdl.handle.net/20.500.12469/5341
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:001057439400001 en_US
dc.identifier.wosquality N/A
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Robotics en_US
dc.relation.publicationcategory Diğer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 10
dc.subject Multimodal Optimization En_Us
dc.subject Differential Evolution En_Us
dc.subject Neuro-Rehabilitation En_Us
dc.subject Algorithm En_Us
dc.subject Transmission En_Us
dc.subject Actuator En_Us
dc.subject Task En_Us
dc.subject Multimodal Optimization
dc.subject Differential Evolution
dc.subject exoskeleton en_US
dc.subject Neuro-Rehabilitation
dc.subject design en_US
dc.subject Algorithm
dc.subject optimization en_US
dc.subject Transmission
dc.subject evolutionary algorithms en_US
dc.subject Actuator
dc.subject mechanical design en_US
dc.subject Task
dc.subject robotics en_US
dc.title Optimizing Exoskeleton Design with Evolutionary Computation: An Intensive Survey en_US
dc.type Review en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isAuthorOfPublication 6f4bfc6a-f6a1-4ef6-83b0-cd0753a2609b
relation.isAuthorOfPublication.latestForDiscovery f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isOrgUnitOfPublication 01f3d407-6823-4ad3-8298-0b6a2a6e5cff
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery 01f3d407-6823-4ad3-8298-0b6a2a6e5cff

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5341.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text