Click Prediction Boosting Via Bayesian Hyperparameter Optimization-Based Ensemble Learning Pipelines

dc.contributor.author Demirel, Cagatay
dc.contributor.author Tokuc, A. Aylin
dc.contributor.author Tekin, Ahmet Tezcan
dc.date.accessioned 2024-10-15T19:38:54Z
dc.date.available 2024-10-15T19:38:54Z
dc.date.issued 2023
dc.description TOKUC, AYSE AYLIN/0000-0002-5331-5706 en_US
dc.description.abstract Online travel agencies (OTA's) advertise their website offers on meta-search bidding engines. The problem of predicting the number of clicks a hotel would receive for a given bid amount is an important step in the management of an OTA's advertisement campaign on a meta-search engine because bid times number of clicks defines the cost to be generated. Various regressors are ensembled in this work to improve click prediction performance. After preprocessing, the entire feature set is divided into 5 groups, with the training set preceding the test set in the time domain, and multi-set validation is applied. The training data for each validation set is then subjected to feature elimination, and the selected models are next validated with separate ensemble models based on the mean and weighted average of the test predictions. Additionally, a stacked meta-regressor is designed and tested, along with the complete train set, whose click prediction values are extracted in accordance with the out- of-fold prediction principle. The original feature set and the stacked input data are then combined, and level-1 regressors are trained once again to form blended meta-regressors. All individually trained models are then compared pairwise with their ensemble variations. Adjusted R 2 score is chosen as the main evaluation metric. The meta-models with tree-based ensemble level-1 regressors do not provide any performance improvement over the stand-alone versions, whereas the stack and blended ensemble models with all other non-tree-based models as level-1 regressors boost click prediction (0.114 and 0.124) significantly compared to their stand-alone versions. Additionally, statistical evidence is provided to support the importance of Bayesian hyperparameter optimization to the performance-boosting of level-1 regressors. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.iswa.2023.200185
dc.identifier.issn 2667-3053
dc.identifier.uri https://doi.org/10.1016/j.iswa.2023.200185
dc.identifier.uri https://hdl.handle.net/20.500.12469/6292
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Intelligent Systems with Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Machine learning en_US
dc.subject Ensemble learning en_US
dc.subject Meta-regressors en_US
dc.subject Bayesian optimization en_US
dc.subject Meta-search engines en_US
dc.subject Online travel agencies en_US
dc.title Click Prediction Boosting Via Bayesian Hyperparameter Optimization-Based Ensemble Learning Pipelines en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id TOKUC, AYSE AYLIN/0000-0002-5331-5706
gdc.author.wosid Tekin, Ahmet/ACF-9630-2022
gdc.author.wosid Tokuç, A. Aylin/IXN-5337-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Demirel, Cagatay] Istanbul Tech Univ, Comp Engn Dept, TR-34467 Istanbul, Turkiye; [Demirel, Cagatay] Donders Inst Brain Cognit & Behav, Kapittelweg 29, NL-6525 EN Nijmegen, Netherlands; [Tokuc, A. Aylin] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkiye; [Tekin, Ahmet Tezcan] Istanbul Tech Univ, Management Engn Dept, Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 200185
gdc.description.volume 17 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.identifier.openalex W4319239957
gdc.identifier.wos WOS:001306715500005
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6951597E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Machine Learning
gdc.oaire.keywords Travel agency
gdc.oaire.keywords E-learning
gdc.oaire.keywords Bayesian
gdc.oaire.keywords Meta-search engines
gdc.oaire.keywords Machine Learning (cs.LG)
gdc.oaire.keywords Ensemble learning
gdc.oaire.keywords Machine learning
gdc.oaire.keywords Machine-learning
gdc.oaire.keywords Hyper-parameter optimizations
gdc.oaire.keywords Bayesian optimization
gdc.oaire.keywords Adaptive boosting
gdc.oaire.keywords Meta-regressors
gdc.oaire.keywords Learning systems
gdc.oaire.keywords Meta-regressor
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.keywords Level-1
gdc.oaire.keywords Online travel agency
gdc.oaire.keywords Online travel agencies
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Search engines
gdc.oaire.keywords Meta search engines
gdc.oaire.keywords Q300-390
gdc.oaire.keywords Cybernetics
gdc.oaire.keywords Forecasting
gdc.oaire.popularity 4.3989683E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 1.533
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 3
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 24
gdc.plumx.newscount 1
gdc.plumx.scopuscites 7
gdc.wos.citedcount 4
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files