Splitout: Out-Of Training-Hijacking Detection in Split Learning Via Outlier Detection

dc.authorscopusid57226330858
dc.authorscopusid58114653600
dc.authorscopusid58114845600
dc.authorscopusid26531375100
dc.authorscopusid56054187000
dc.contributor.authorErdoğan,E.
dc.contributor.authorTekşen,U.
dc.contributor.authorÇeliktenyıldız,M.S.
dc.contributor.authorKüpçü,A.
dc.contributor.authorÇiçek,A.E.
dc.date.accessioned2024-11-15T17:49:06Z
dc.date.available2024-11-15T17:49:06Z
dc.date.issued2025
dc.departmentKadir Has Universityen_US
dc.department-tempErdoğan E., Technical University of Munich, Munich, Germany; Tekşen U., Kadir Has University, Istanbul, Turkey; Çeliktenyıldız M.S., Bilkent University, Ankara, Turkey; Küpçü A., Koç University, Istanbul, Turkey; Çiçek A.E., Bilkent University, Ankara, Turkeyen_US
dc.description.abstractSplit learning enables efficient and privacy-aware training of a deep neural network by splitting a neural network so that the clients (data holders) compute the first layers and only share the intermediate output with the central compute-heavy server. This paradigm introduces a new attack medium in which the server has full control over what the client models learn, which has already been exploited to infer the private data of clients and to implement backdoors in the client models. Although previous work has shown that clients can successfully detect such training-hijacking attacks, the proposed methods rely on heuristics, require tuning of many hyperparameters, and do not fully utilize the clients’ capabilities. In this work, we show that given modest assumptions regarding the clients’ compute capabilities, an out-of-the-box outlier detection method can be used to detect existing training-hijacking attacks with almost-zero false positive rates. We conclude through experiments on different tasks that the simplicity of our approach we name SplitOut makes it a more viable and reliable alternative compared to the earlier detection methods. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (119E088)en_US
dc.identifier.doi10.1007/978-981-97-8016-7_6
dc.identifier.endpage142en_US
dc.identifier.isbn978-981978015-0
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85206187794
dc.identifier.scopusqualityQ3
dc.identifier.startpage118en_US
dc.identifier.urihttps://doi.org/10.1007/978-981-97-8016-7_6
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6728
dc.identifier.volume14906 LNCSen_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- 23rd International Conference on Cryptology and Network Security, CANS 2024 -- 24 September 2024 through 27 September 2024 -- Cambridge -- 320659en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData privacyen_US
dc.subjectMachine learningen_US
dc.subjectSplit learningen_US
dc.subjectTraining-hijackingen_US
dc.titleSplitout: Out-Of Training-Hijacking Detection in Split Learning Via Outlier Detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files