Splitout: Out-Of Training-Hijacking Detection in Split Learning Via Outlier Detection

dc.authorscopusid57226330858
dc.authorscopusid58114653600
dc.authorscopusid58114845600
dc.authorscopusid26531375100
dc.authorscopusid56054187000
dc.contributor.authorErdogan, Ege
dc.contributor.authorTeksen, Unat
dc.contributor.authorCeliktenyildiz, M. Salih
dc.contributor.authorKupcu, Alptekin
dc.contributor.authorCicek, A. Erciment
dc.date.accessioned2024-11-15T17:49:06Z
dc.date.available2024-11-15T17:49:06Z
dc.date.issued2025
dc.departmentKadir Has Universityen_US
dc.department-temp[Erdogan, Ege] Tech Univ Munich, Munich, Germany; [Teksen, Unat] Kadir Has Univ, Istanbul, Turkiye; [Celiktenyildiz, M. Salih; Cicek, A. Erciment] Bilkent Univ, Ankara, Turkiye; [Kupcu, Alptekin] Koc Univ, Istanbul, Turkiyeen_US
dc.description.abstractSplit learning enables efficient and privacy-aware training of a deep neural network by splitting a neural network so that the clients (data holders) compute the first layers and only share the intermediate output with the central compute-heavy server. This paradigm introduces a new attack medium in which the server has full control over what the client models learn, which has already been exploited to infer the private data of clients and to implement backdoors in the client models. Although previous work has shown that clients can successfully detect such training-hijacking attacks, the proposed methods rely on heuristics, require tuning of many hyperparameters, and do not fully utilize the clients' capabilities. In this work, we show that given modest assumptions regarding the clients' compute capabilities, an out-of-the-box outlier detection method can be used to detect existing training-hijacking attacks with almost-zero false positive rates. We conclude through experiments on different tasks that the simplicity of our approach we name SplitOut makes it a more viable and reliable alternative compared to the earlier detection methods.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (119E088)en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [119E088]en_US
dc.description.sponsorshipWe acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK) project 119E088.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi10.1007/978-981-97-8016-7_6
dc.identifier.endpage142en_US
dc.identifier.isbn9789819780150
dc.identifier.isbn9789819780167
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85206187794
dc.identifier.scopusqualityQ3
dc.identifier.startpage118en_US
dc.identifier.urihttps://doi.org/10.1007/978-981-97-8016-7_6
dc.identifier.volume14906en_US
dc.identifier.wosWOS:001344497600006
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringer-verlag Singapore Pte Ltden_US
dc.relation.ispartof23rd International Conference on Cryptology and Network Security (CANS) -- SEP 24-27, 2024 -- Univ Cambridge, Dep Comp Sci & Tech, Cambridge, ENGLANDen_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine learningen_US
dc.subjectData privacyen_US
dc.subjectSplit learningen_US
dc.subjectTraining-hijackingen_US
dc.titleSplitout: Out-Of Training-Hijacking Detection in Split Learning Via Outlier Detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files